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Part I: Linear Classifier
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Online Learning Model

• Examples arrive sequentially.

• Objective: Minimize the number of mistakes.
• Applications:

• Email classification (distribution of both spam and regular 
mail changes over time).

• Recommendation systems.
• …

Figure from Balcan (2018)
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Linear Separators

• Feature space 𝑋 ∈ ℝ𝑑 .
• Hypothesis class of linear decision surfaces in ℝ𝑑 .

• ℎ 𝑥 = 𝑾𝑇𝑥 + 𝑤0, where 𝑾 =
(𝑤1, … , 𝑤𝑑) ∈ ℝ𝑑

• If ℎ 𝑥 ≥ 0, then label 𝑥 as +, otherwise label 
it as –

Trick: Without loss of generality 𝑤0 = 0.

Proof:  Can simulate a non-zero threshold with a dummy input feature 𝑥0 
that is always set up to 1.
• 𝑥 = 𝑥1, … , 𝑥𝑑 → ෤𝑥 = (𝑥1, … , 𝑥𝑑 , 1)
• 𝑾𝑇𝑥 + 𝑤0 ≥ 0 iff ෪𝑾𝑇 ෤𝑥 ≥ 0, where ෪𝑾 = (𝑤1, … , 𝑤𝑑 , 𝑤0)

Figure from Balcan (2018)
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Linear Separators: Perceptron Algorithm

• Set t = 1, start with the all zero vector 𝑾𝟏 = (0, … , 0).
• Given example 𝑥, predict positive iff 𝑾𝑡

𝑇𝑥 ≥ 0.
• On a mistake, update as follows:

• Mistake on positive, then update 𝑾𝑡+1 ← 𝑾𝑡 + 𝑥
• Mistake on negative, then update 𝑾𝑡+1 ← 𝑾𝑡 − 𝑥

Natural greedy procedure:
• If true label of 𝑥 is +1 and 𝑾𝑡 incorrect on 𝑥, we have 𝑾𝑡

𝑇𝑥 < 0. 
• By Perceptron Algorithm, we have 𝑾𝑡+1

𝑇 𝑥 ← 𝑾𝑡
𝑇𝑥 + 𝑥𝑇𝑥 = 𝑾𝑡

𝑇𝑥 +
||𝑥||2.

• Then, there will be more chance that 𝑾𝑡+1 classifies 𝑥 correctly.
• Similar for mistakes on negative examples.
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Perceptron Algorithm: Practice

Example: 𝑾∗ = (𝟏, 𝟎)

1. −1,2       -

2. 1,0  +

3. 1,1          +

4. −1,0       -

5. −1, −2   -

6. 1, −1      +

Algorithm:
• Set t = 1, start with the all zero vector 𝑾𝟏 = (0, … , 0).
• Given example 𝑥, predict positive iff 𝑾𝑡

𝑇𝑥 ≥ 0.
• On a mistake, update as follows:

• Mistake on positive, then update 𝑾𝑡+1 ← 𝑾𝑡 + 𝑥
• Mistake on negative, then update 𝑾𝑡+1 ← 𝑾𝑡 − 𝑥

1

2

3

6

5

4

𝑾𝟏 = (0,0)

𝑾𝟐 = 𝑾𝟏 − −1,2 = (1, −2)

𝑾𝟏 = (0,0)

𝑾𝟐 = (1, −2)

𝑾𝟐 = (1, −2)

𝑾𝟑 = (2, −1)

𝑾𝟑 = (2, −1)

𝑾𝟒 = (3, 1)

𝑾𝟐

𝑾∗

𝑾𝟏

𝑾𝟑

𝑾𝟑 = 𝑾𝟐 + 1,1 = (2, −1)

𝑾𝟒 = 𝑾𝟑 − −1, −2 = (3,1)

𝑾𝟒
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Geometric Margin

Definition: The margin of example 𝑥 w.r.t a linear separator 𝑾 is the 
distance from 𝑥 to the plane 𝑾𝑇𝑥 = 0 (or the negative if on wrong side)

Figure from Balcan (2018)
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Geometric Margin

Definition: The margin of example 𝑥 w.r.t a linear separator 𝑾 is the 
distance from 𝑥 to the plane 𝑾𝑇𝑥 = 0 (or the negative if on wrong side)

Definition: The margin 𝛾𝑊  of a set of example 𝑆 w.r.t a linear separator 𝑾 is 
the smallest margin over points 𝑥 ∈ 𝑆.

Figure from Balcan (2018)
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Geometric Margin

Definition: The margin of example 𝑥 w.r.t a linear separator 𝑾 is the 
distance from 𝑥 to the plane 𝑾𝑇𝑥 = 0 (or the negative if on wrong side)

Definition: The margin 𝛾𝑊  of a set of example 𝑆 w.r.t a linear separator 𝑾 is 
the smallest margin over points 𝑥 ∈ 𝑆.

Definition: The margin 𝛾 of a set of example 𝑆 is the maximum 𝛾𝑊  over all 
linear separators 𝑤.

Figure from Balcan (2018)

Q: Why is it defined to 
be the maximum 𝛾𝑊?
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Perceptron: Mistake Bound

Guarantee: If data has margin 𝛾 and all points inside a ball of radius 𝑅, then 
Perceptron makes ≤ (𝑅/𝛾)2 mistakes.

(Normalized margin: multiplying all points by 100, or dividing all points by 
100, doesn’t change the number of mistakes: algo is invariant to scaling.)

Figure from Balcan (2018)
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Perceptron: Mistake Bound

Guarantee: If data has margin 𝛾 and all points 
inside a ball of radius 𝑅, then Perceptron 
makes ≤ (𝑅/𝛾)2 mistakes.

Update rule:
• Mistake on positive:
• Mistake on negative:

𝑾𝑡+1 ← 𝑾𝑡 + 𝑥

𝑾𝑡+1 ← 𝑾𝑡 − 𝑥

Proof: 
Idea: analyze 𝑾𝑡

𝑇𝑾∗ and ||𝑾𝑡||, where 𝑾∗ is the max-margin separator with 

𝑾∗ = 1. 

• Claim 1: 𝑾𝑡+1
𝑇 𝑾∗ ≥ 𝑾𝑡

𝑇𝑾∗ + 𝛾. (because 𝑾𝑡
𝑇𝑥 ≥ 𝛾)

• Claim 2: ||𝑾𝑡+1||2 ≤ ||𝑾𝑡||2 + 𝑅2. (by Pythagorean Theorem)

After M mistakes:
  𝑾𝑡+1

𝑇 𝑾∗ ≥ 𝛾𝑀            (by Claim 1)

 ||𝑾𝑀+1|| ≤ 𝑅 𝑀        (by Claim 2)
  𝑾𝑡+1

𝑇 𝑾∗ ≤ ||𝑾𝑀+1|| (since 𝑾∗ is unit length)

In summary, 𝛾𝑀 ≤ 𝑾𝑡+1
𝑇 𝑾∗ ≤ ||𝑾𝑀+1|| ≤ 𝑅 𝑀. So, 𝑀 ≤ (𝑅/𝛾)2.

𝑾𝑡

𝑾𝑡+1
𝑥
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Margin Important Theme in ML

• If large margin, the number of mistakes Perceptron makes is small 
(independent on the dimension of the ambient space)

• Large margin can help prevent overfitting.

• Support Vector Machines (SVMs) directly optimize for the maximum 
margin separator:
• Input: 𝑆 = 𝑥1, 𝑦1 , … , 𝑥𝑚 , 𝑦𝑚 ;
• Find: some 𝑾 and maximum γ where:

• 𝑾 = 1
• For all 𝑖 ∈ {1, … , 𝑚}, 𝑦𝑖𝑾𝑇 ≥ 𝛾

• Output: maximum margin separator over 𝑆.
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Part II: Gradient Descent 

(and Beyond)
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Taylor Expansion

• How can you minimize a function 𝑙(𝑾) if you don't know much 
about it?

• The trick is to assume it is much simpler than it really is.

• This can be done with Taylor’s approximation.

• Given a small norm ||𝑠||2(i.e., 𝑾 + 𝑠 is very close to 𝑾), we can 
approximate the function 𝑙 𝑾 + 𝑠  by its first and second derivatives:

Here 𝑔 𝑥 = ∇𝑙(𝑾) is the gradient and 𝐻 𝑥 = ∇2𝑙(𝑾) is the 
Hessian of 𝑙.

𝑙 𝑾 + 𝑠 ≈ 𝑙 𝑾 + 𝑔 𝑾 ∙ 𝑠 (Gradient Descent)

𝑙 𝑾 + 𝑠 ≈ 𝑙 𝑾 + 𝑔 𝑾 ∙ 𝑠 +
1

2
𝑠𝑇 ∙ 𝐻 𝑾 ∙ 𝑠 (𝑁𝑒𝑤𝑡𝑜𝑛′𝑠 𝑀𝑒𝑡ℎ𝑜𝑑)
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Gradient Descent (GD)

• In GD, we only use the gradient (first order). 
• We assume the function 𝑙 around 𝑾 is linear and behaves like 

𝑙 𝑾 + 𝑔(𝑾) ∙ 𝑠.
• Our objective is to find a vector 𝑠 that minimizes function 𝑙. 
• In steepest descent we simply set

for some small 𝜂 > 0.
• It is straight-forward to prove that

in this case 𝑙 𝑾 + 𝑠 < 𝑙(𝑾):

𝑠 = −𝜂 ∙ 𝑔(𝑾)

𝑙(𝑾 + −𝜂 ∙ 𝑔 𝑾 )
≈ 𝑙(𝑾) − 𝜂 ∙ 𝑔(𝑾)𝑇𝑔 𝑾

 < 𝑙(𝑾)

Figure from Kharkar (2023)
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GD: Learning Rate

• Setting the learning rate 𝜂 > 0 is a dark art.
• Large 𝜂 ⟹ Fast convergence but larger residual error ||𝑾𝒕+𝟏 −

𝑾𝒕||𝟐, with possible oscillations.
• Small 𝜂 ⟹ Slow convergence but small residual error.

• A safe (but sometimes slow) choice is to set 𝜂 =
1

𝑡
, which guarantees 

that it will eventually become small enough to converge.

Figure from Balcan (2018)
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GD: In Practice

In ML, the loss we minimize typically has some special form, e.g.,

𝑙 𝑾 =
1

𝑛
෍

𝑖=1

𝑛

ln(1 + exp(−𝑦𝑖(𝑾𝑇𝑥𝑖)))

Average over n data points

To compute the gradient ∇𝑙 𝑾 , we need to enumerate all n training 
data points, which can be very slow!
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Stochastic GD (SGD) to Rescue

In ML, the loss we minimize typically has some special form, e.g.,

𝑙 𝑾 =
1

𝑛
෍

𝑖=1

𝑛

ln(1 + exp(−𝑦𝑖(𝑾𝑇𝑥𝑖)))

Average over n data points

Idea: Randomly sample a data point (𝑥, 𝑦), use ∇𝑙(𝑥, 𝑦; 𝑾) to replace ∇𝑙(𝑾).  
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Stochastic GD (SGD)

• Goal: minimize 𝑙 𝑾 =
1

𝑛
σ𝑖=1

𝑛 𝑙(𝑥𝑖 , 𝑦𝑖; 𝑾)

• Initialize: 𝑾0 ∈ ℝ𝑑  randomly

• Iterate until convergence:

1. Randomly sample a point (𝑥𝑖 , 𝑦𝑖) from the n data points

2. Compute noisy gradient ෤𝑔𝑡 = ∇𝑙 𝑥𝑖 , 𝑦𝑖; 𝑾 |𝑾=𝑾𝑡

3. Update (GD): 𝑾𝒕+𝟏 = 𝑾𝒕 − 𝜂 ෤𝑔𝑡
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Why Can SGD Work?

𝔼 ∇𝑙 𝑥𝑖 , 𝑦𝑖; 𝑾 =
1

𝑛
෍

𝑖=1

𝑛

∇𝑙 𝑥𝑖 , 𝑦𝑖; 𝑾 = ∇
1

𝑛
෍

𝑖=1

𝑛

𝑙 𝑥𝑖 , 𝑦𝑖; 𝑾 = ∇𝑙(𝑾)

Claim: the random noisy gradient is an unbiased estimate of the true gradient

A: SGD is slower in 
theory, but is often 
much faster in practice.

Q: Which one is faster?

Figure from Sun (2022)
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Part III: Linear Regression
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From Discrete to Continuous Labels

Classification:

Regression:

Figure from Balcan (2018)
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Supervised Learning

Classification: Regression:

Goal: Construct a predictor 𝑓: 𝑋 → 𝑌 to minimize a risk (error 
measure) err(𝑓) .

err 𝑓 = 𝑃(𝑓(𝑋) ≠ 𝑌) 

Probability of error

err 𝑓 = 𝐸[ 𝑓 𝑋 − 𝑌)2 ] 

Mean Squared Error

Figure from Balcan (2018)
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Linear Regression

• Unit-variate case: 𝑓 𝑋 = 𝛽1 + 𝛽2𝑋.

• Multi-variate case:

𝑓 𝑋 = 𝑓 𝑋 1 , … , 𝑋 𝑝 = 𝛽1𝑋 1 + 𝛽2𝑋 2 + … + 𝛽𝑝𝑋 𝑝

= 𝑋𝛽, where 𝑋 = 𝑋 1 … 𝑋 𝑝 , 𝛽 = [𝛽1  … 𝛽𝑝]𝑇

• Least square estimator: መ𝑓 = arg min
𝑓∈𝐹

1

𝑛
σ𝑖=1

𝑛 (𝑓(𝑋𝑖) − 𝑌𝑖)2, where 𝐹 

is the class of linear functions.

Figure from Balcan (2018)
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Least Squares Estimator

• መ𝑓 = arg min
𝑓∈𝐹

1

𝑛
σ𝑖=1

𝑛 (𝑓(𝑋𝑖) − 𝑌𝑖)2

• መ𝛽 = arg min
𝛽

1

𝑛
σ𝑖=1

𝑛 ( 𝑋𝑖𝛽 − 𝑌𝑖)2

    = arg min
𝛽

1

𝑛
(𝐗𝛽 − 𝐘)𝑇(𝐗𝛽 − 𝐘)

𝐗 =
𝑋1

…
𝑋𝑛

=
𝑋1

(1)
⋯ 𝑋1

(𝑝)

⋮ ⋱ ⋮

𝑋𝑛
(1)

⋯ 𝑋𝑛
(𝑝)

,      𝐘 =
𝑌1

…
𝑌𝑛

.
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Least Squares Estimator

• መ𝛽 = arg min
𝛽

1

𝑛
(𝐗𝛽 − 𝐘)𝑇 𝐗𝛽 − 𝐘 = arg min

𝛽
𝐽 𝛽

• 𝐽 𝛽 = (𝐗𝛽 − 𝐘)𝑇 𝐗𝛽 − 𝐘

•
𝜕𝐽(𝛽)

𝜕𝛽
|෡𝛽 = 0

መ𝛽 = (𝐗𝑇𝐗)−1𝐗𝑇𝐘         መ𝑓(𝑿) = 𝐗 መ𝛽

• (𝐗𝑇𝐗) መ𝛽 = 𝐗𝑇𝐘

• If 𝐗𝑇𝐗 is invertible,
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Least Squares Estimator: Verification

• መ𝑓(𝐗) = 𝐗 መ𝛽 = 𝐗(𝐗𝑇𝐗)−1𝐗𝐘𝑇

• We calculate

𝐗𝑇( መ𝑓 𝐗 − 𝐘) = 𝐗𝑇𝐗(𝐗𝑇𝐗)−1𝐗𝐘𝑇 − 𝐗𝐘𝑇 = 𝟎.
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Revisiting Gradient Descent

• Even when 𝐗𝑇𝐗 is invertible, might be computationally expensive if 𝐗 
is huge.

መ𝛽 = arg min
𝛽

1

𝑛
(𝐗𝛽 − 𝐘)𝑇 𝐗𝛽 − 𝐘 = arg min

𝛽
𝐽 𝛽

• Gradient Descent since 𝐽 𝛽  is convex
• Initialize: 𝛽0

• Update: 𝛽𝑡+1 = 𝛽𝑡 −
𝜂

2
𝐗𝑇 𝜕𝐽 𝛽

𝜕𝛽
|𝑡

                               = 𝛽𝑡 − 𝜂𝐗𝑇 𝐗𝛽𝑡 − 𝐘
• Stop: when some criterion met, e.g., 

fixed # iterations, or 
𝜕𝐽(𝛽)

𝜕𝛽
|𝑡 < 𝜀.

Q: What about Stochastic GD for linear regression?

Figure from Balcan (2018)
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Part IV: Convolutional Neural 

Networks (CNNs)
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Motivation of Convolution

• Suppose we track the location of a spaceship with a laser sensor. The 
laser sensor provides a single output 𝑢(𝑡), which is the position of 
the spaceship at second 𝑡.

• Suppose sensor is noisy. To obtain a less noisy estimate of the 
spaceship’s position, we average several measurements. More 
recent measurements are more relevant, so we use a weighted 
average that gives more weight to recent measurements.

• Use a weighting function 𝑤(𝑎), where 𝑎 is the age of a 
measurement. If we apply such a weighted average operation at 
every moment, we obtain a new function s providing a smoothed 
estimate of the position of the spaceship:

𝑠𝑡 = ෍

𝑎=−∞

+∞

𝑢𝑎𝑤𝑡−𝑎
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Illustration 1

𝑠𝑡 = ෍

𝑎=−∞

+∞

𝑢𝑎𝑤𝑡−𝑎

a b ec d f

x y z

𝑤0𝑤1𝑤2

𝑢1 𝑢2 𝑢3

𝑢1𝑤2 = 𝑥𝑏

𝑠3 = ෍

𝑎=1

3

𝑢𝑎𝑤3−𝑎 = 𝑢1𝑤2 + 𝑢2𝑤1 + 𝑢3𝑤0

                                   = 𝑥𝑏 + 𝑦𝑐 + 𝑧𝑑

Q: What is 𝑠3 here?

𝑤 = 𝑧, 𝑦, 𝑥
𝑢 = [𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓]
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Illustration 1

𝑠𝑡 = ෍

𝑎=−∞

+∞

𝑢𝑎𝑤𝑡−𝑎

a b ec d f

x y z

𝑤0𝑤1𝑤2

𝑢2 𝑢3

𝑠4 = ෍

𝑎=2

4

𝑢𝑎𝑤4−𝑎 = 𝑢2𝑤2 + 𝑢3𝑤1 + 𝑢4𝑤0

                                   = 𝑥𝑐 + 𝑦𝑑 + 𝑧𝑒

𝑢4
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Illustration 1

𝑠𝑡 = ෍

𝑎=−∞

+∞

𝑢𝑎𝑤𝑡−𝑎

a b ec d f

x y z

𝑤0𝑤1𝑤2

𝑢5𝑢3

𝑠5 = ෍

𝑎=3

5

𝑢𝑎𝑤5−𝑎 = 𝑢3𝑤2 + 𝑢4𝑤1 + 𝑢5𝑤0

                                   = 𝑥𝑑 + 𝑦𝑒 + 𝑧𝑓

𝑢4
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Illustration 1

𝑠𝑡 = ෍

𝑎=−∞

+∞

𝑢𝑎𝑤𝑡−𝑎

a b ec d f

x y z

𝑤0𝑤1𝑤2

𝑢5

𝑠6 = ෍

𝑎=4

5

𝑢𝑎𝑤6−𝑎 = 𝑢4𝑤2 + 𝑢5𝑤1

                                          = 𝑥𝑒 + 𝑦𝑓

𝑢4
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Illustration 1 as Matrix Multiplication
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Illustration 2: Two-Dimensional Case

Input
Kernal

(or filter)

Feature map

Figure from Balcan (2018)
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Advantages of CNNs

• Sparse interaction
• Reduces memory requirements
• Improves statistical efficiency

• Parameter sharing
• The same kernel are used repeatedly

• Equivariant representations
• transforming the input = transforming the output
• Useful when care only about the existence of a pattern, rather 

than the location

Figure from Deep Learning, by Goodfellow, Bengio, and Courville
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Other Layers: Activation Functions

• Activation functions determine whether a neuron is activated based 
on its input, effectively deciding whether the input is important for 
making a prediction.

• ReLU: σ x = max(0, 𝑥)

• Sigmoid: σ x =
1

1+𝑒−𝑥

• tanh: σ x = tanh(x)

Q: Any other benefit?

Activation Functions 
introduce non-linearity, 
enabling the network to 
learn complex patterns 
and model intricate 
relationships within data.
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Other Layers: Pooling Layer

• We use a pooling layer to downsize the inputs.

• For example, max pooling (2x2 filter and stride 2)

1 3 0 7

2 4 8 3

5 1 9 0

3 4 1 8

4
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Other Layers: Pooling Layer

• We use a pooling layer to downsize the inputs.

• For example, max pooling (2x2 filter and stride 2)

1 3 0 7

2 4 8 3

5 1 9 0

3 4 1 8

4 8
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Other Layers: Pooling Layer

• We use a pooling layer to downsize the inputs.

• For example, max pooling (2x2 filter and stride 2)

1 3 0 7

2 4 8 3

5 1 9 0

3 4 1 8

4 8

5 9
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A Case of CNNs

Figure from Feifei Li & Andrej Karpathy (2016)

Q: How to update the parameters of each layer?
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धन्यवाद
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