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Part I: Linear Classifier
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Online Learning Model ,,

* Examples arrive sequentially.

Fori=1 2, ..:

o Example x;

Phase i: Online Algorithm ), Prediction h(x;)

| 4

— Observe true label (x;)

* Objective: Minimize the number of mistakes.
* Applications:
* Email classification (distribution of both spam and regular
mail changes over time).
 Recommendation systems.

AI-EDGE Summer REU Program
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Linear Separators

* Feature space X € R<. X o 4
* Hypothesis class of linear decision surfaces in R€. xx o
e h(x) =W"x + wy, where W = X Tx
d (0] , O
(Wq, ...,wg) ER x X W
e If h(x) = 0, then label x as +, otherwise label X 0
L o]
It as X X
(o)

Trick: Without loss of generality w, = 0.

Proof: Can simulate a non-zero threshold with a dummy input feature x
that is always set up to 1.

o x=(x1,.0,Xg) > X = (%1, ., x4, 1)

c Wix+w,=0iff W's >0, where W = (wy, ..., wg, Wy)
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Linear Separators: Perceptron Algorithm

* Sett = 1, start with the all zero vector W; = (0, ..., 0).
* Given example x, predict positive iff W] x > 0.
* On a mistake, update as follows:
* Mistake on positive, then update W, ., « W, + x
* Mistake on negative, then update W, « W, — x

Natural greedy procedure:
e If true label of x is +1 and W, incorrect on x, we have Wl x < 0.

* By Perceptron Algorithm, we have W], x « Wlx + xTx = Wlx +
[lx] 12

* Then, there will be more chance that W, classifies x correctly.

* Similar for mistakes on negative examples.
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Perceptron Algorithm: Practice

Example: W* = (1,0) \ w*
1. (-1,2) - wy=(00 )74 ‘1 K
\ N
2. (110) T W, = (1,-2) ‘\ J 3 _ -
;S
3 (1,1) + w,=(1,-2) ¥ = 1 AR
........ ___.,_4_’_; "-—*-2—-——>
4 (1,00 - wy=(-1) SR (R W1
- ;| v 16
5 (-1,-2) - ws=(@2-1) K W~ » o
6. (1,-1) + Wi=G1 [Z 2 O
( ) 4 . W3 » < W4_
Algorithm: W — (00
* Sett =1, start with the all zero vector W; = (0, ..., 0). 1=(0,0)
* Given example x, predict positive iff Wx > 0. Wy=W;—-(-12) =(1,-2)
* On a mistake, update as follows: Ws=W,+(1,1) = (2,-1)

* Mistake on positive, then update W;,; « W, + x
* Mistake on negative, then update W;,; « W; — x
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Geometric Margin

Definition: The margin of example x w.r.t a linear separator W is the
distance from x to the plane W' x = 0 (or the negative if on wrong side)

Margin of positive example x;

Margin of negative example x,
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Geometric Margin

Definition: The margin of example x w.r.t a linear separator W is the
distance from x to the plane W' x = 0 (or the negative if on wrong side)

Definition: The margin y, of a set of example S w.r.t a linear separator W is
the smallest margin over points x € S.
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Geometric Margin

Definition: The margin of example x w.r.t a linear separator W is the
distance from x to the plane W' x = 0 (or the negative if on wrong side)

Definition: The margin y, of a set of example S w.r.t a linear separator W is
the smallest margin over points x € S.

Definition: The margin y of a set of example S is the maximum yy,, over all
linear separators w.

Q: Why is it defined to
be the maximum yy,,?
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Perceptron: Mistake Bound

Guarantee: |If data has margin y and all points inside a ball of radius R, then
Perceptron makes < (R /y)* mistakes.

(Normalized margin: multiplying all points by 100, or dividing all points by
100, doesn’t change the number of mistakes: algo is invariant to scaling.)
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Perceptron: Mistake Bound

Guarantee: If data has margin ¥ and all points  Update rule:

inside a ball of radius R, then Perceptron ) M!S:a::e on pos'tt'\.’e: x”l - xt M
. ¢ IStake on negative: «— — X

makes < (R/y)? mistakes. o

Proof:
Idea: analyze W W* and ||W,||, where W* is the max-margin separator with
wW*|| = 1.

e Claim1: WL, . W* > WIW* + y. (because Wl x > y)
e Claim 2: [|[W1||? < ||W,]||? + R?. (by Pythagorean Theorem)

After M mistakes: Wi X
wi . w:>yM (by Claim 1) ‘

|Wsi|l <RVM  (byClaim 2) w,
Wi,  W* <||W .|| (since W* is unit length)
In summary, yM < WL, ,W* < ||[Wy,.1|| < RVM.So, M < (R/y)?.
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Margin Important Theme in ML

* |f large margin, the number of mistakes Perceptron makes is small
(independent on the dimension of the ambient space)

* Large margin can help prevent overfitting.

e Support Vector Machines (SVMs) directly optimize for the maximum
margin separator:
¢ I_nM: S — {('xll }’1); LN (xm) ym)})
* Find: some W and maximum y where:
- |lwl] =1
e Foralli € {1,.., m},yWl >y
* Qutput: maximum margin separator over S.
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Part ll: Gradient Descent
(and Beyond)
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Taylor Expansion

* How can you minimize a function [(W) if you don't know much
about it?

* Thetrickisto assume it is much simpler than it really is.
* This can be done with Taylor’s approximation.

* Given asmallnorm ||s]]|,(i.e., W + s is very close to W), we can
approximate the function (W + s) by its first and second derivatives:

I(W+s) = l(W)+ g(W) - s (Gradient Descent)

1
I(W+s)=I(W)+gW)-s -I-EST -H(W) - s (Newton's Method)

Here g(x) = VI(W) is the gradient and H(x) = V2[(W) is the
Hessian of [.
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Gradient Descent (GD)

A

* |In GD, we only use the gradient (first order).
* We assume the function [ around W is linear and behaves like

L((W) +g(W) -s.

e QOur objective is to find a vector s that minimizes function L.

* |In steepest descent we simply set

s=-n-gW)
for some smalln > 0. A
* Itisstraight-forward to prove that Initial . Cradiont
in this case (W + s) < [(W): Weight —

(W + (=1 - g(W)))
~I(W)—n-gW) gw)
< (W)

Incremental

Step \

—/ Minimum CDSt

Derivative of Cost

Some Basics of ML
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GD: Learning Rate

* Setting the learning rate n > 0 is a dark art.
e Large 1 = Fast convergence but larger residual error ||[Wt1 —
Wt||,, with possible oscillations.
* Small n = Slow convergence but small residual error.

—l(w) —1(w)

: L 1 :
* A safe (but sometimes slow) choice is to set n = > which guarantees
that it will eventually become small enough to converge.
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GD: In Practice

In ML, the loss we minimize typically has some special form, e.g.,

(W)

%Zl In(1 + exp(—y; (WTx;)))

Average over n data points

To compute the gradient VI(W), we need to enumerate all n training
data points, which can be very slow!
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Stochastic GD (SGD) to Rescue

In ML, the loss we minimize typically has some special form, e.g.,

(W)

%Zl In(1 + exp(—y; (WTx;)))

Average over n data points

Idea: Randomly sample a data point (x, y), use Vi(x, y; W) to replace VI(W).
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Stochastic GD (SGD)

* Goal: minimize [(W) =% P lx W)

* Initialize: W° € R randomly

* lterate until convergence:
1. Randomly sample a point (x;, y;) from the n data points
2. Compute noisy gradient g* = VI(x;, vi; W) |y —wt
3. Update (GD): Wtt1 = Wt — ngt
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Why Can SGD Work?

Claim: the random noisy gradient is an unbiased estimate of the true gradient

n
1
- v W
nzluxl,yl, )
1=

= V(W)

[VZ(xU yu W) z Vl(xl) yu W) -

W+ Level Sets

of Lf)

Q: Which one is faster?

GD

SGD A: SGD is slower in
theory, but is often
much faster in practice.
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Part lll: Linear Regression
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From Discrete to Continuous Labels

Classification: %2, =) Science
News
X = Document Y = Topic
DJ INDU AVERAGE ¢DOW JOMES & CO
as of 22-Jan-2010
11000 ' ' ' ' ' [ ' '
10500 1
Regression:
10000 INY=7?
9300 Novil - Becol . Gecol . Jaos X = FebO1
Copyright 2010 Yahoo! Inc. http://finance .yahoo.com/
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Supervised Learning

A

Goal: Construct a predictor f: X = Y to minimize a risk (error

measure) err(f) .

- o 11000
’M’ 4 3 3 o f'" /’ Sports 10500 F
&~ _.%. ) Science
= Z News
C)O 0%‘:"{ =4 10000
500

X = Document

Classification:

err(f) = P(f(X) #Y)

Probability of error

AI-EDGE Summer REU Program

DJ INDU AVERAGE (DOW JONES & CO

as of 22-Jan-2010

Y=?

1
Nowll

| i 1 L 1
Dec0L Dec2l Janog

Y — Topic Copyright 2010 Yshoo! Inc.

http://Finance .yahoo,com/ X = FEbOl

Regression:

err(f) = E[(f(X) — Y)?)]

Mean Squared Error
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Linear Regression

* Unit-variate case: f(X) = B, + B, X.

B1 - intercept

* Multi-variate case:
FO =fF(xD, ., xP) =XV + g, XD+ L+, XP)
= XB, where X =[x _ x®)|,p =B, .. 5,]"

* Least square estimator: f = arg rjgleilgl%Z?zl(f(Xi) —Y;)?, where F

is the class of linear functions.
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Least Squares Estimator

o f=argmin=Y",(f(X,) — ;)2

fEF N

!

© B =argmin_TIL (X8 — ¥’
= argmin_- (X — V)" (X§ — V)

X7 [xP e x®P] Y,
X=|.|=|: =~ ] v=|.|
X n _X)El) ces Xﬁp) | Yn
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Least Squares Estimator

+ B =argming (Xg - V)"(Xp — Y) = argmin/(f)

» JB =X -YV)'(XB-Y)

L UB

o
- X™X)B =XTY

o IfXTXis invertible,

B =X"X)"XTY f(X)=Xp
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Least Squares Estimator: Verification

¢ f(X) =XpB = XX™X)"1XY”
 We calculate

XT(f(X) = Y) = X"XX™X)"'XY" - XYT = 0.
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Revisiting Gradient Descent

« Even when X7 X is invertible, might be computationally expensive if X
is huge.

, 1 B .
p = argmin—(Xp — Y)'(Xg —Y) = arg minJ(£)

« Gradient Descent since J(f) is convex o
* Initialize: B°
e Update: Bt+1 = gt — Taf(ﬁ) . 0 2]
— ﬁt — nXT (X,B t—Y) |
e Stop: when some criterion met, e.g.,

\
\
fixed # iterations, or——= ](B) |; < €. )

Q: What about Stochastic GD for linear regression?
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Part IV: Convolutional Neural
Networks (CNNs)
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Motivation of Convolution

» Suppose we track the location of a spaceship with a laser sensor. The
laser sensor provides a single output u(t), which is the position of
the spaceship at second t.

* Suppose sensor is noisy. To obtain a less noisy estimate of the
spaceship’s position, we average several measurements. More
recent measurements are more relevant, so we use a weighted
average that gives more weight to recent measurements.

* Use a weighting function w(a), where a is the age of a
measurement. If we apply such a weighted average operation at
every moment, we obtain a new function s providing a smoothed

estimate of the position of the spaceship:
+o00

St = § UgWi_q

a=—0oo
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Illustration 1

uwo = xb

- I

! W2 o w1 Wo w=[zYy,x]

| : uz[alblcldle)f]
I |

| I

U Uy Uus

+0co 3
S; = E UgWi_g - S3 = z UgW3—q = U3W3 + UWy T+ UzWy
d=—c0 a=1

=xb +yc+ zd

Q: What is s3 here?
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Illustration 1

U- U,3 Uy
a | b e pd e ]

+0o 4
S; = E UWi_g » Sg = z UgWa—q = UpW3 + UzWq + UgW
d=—c0 a=2

=xc+yd+ ze
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Illustration 1

U,3 Uy u5
a | b [ ¢ [d e | f

+00 5
Sy = E UgWi_g » S5 = z UgW5—q = UzWy + UgW7 + UsW
d=—00 a=3

=xd +ye+zf
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Illustration 1

+00 5
Sy = E UgWi_g » S6 = z UgWe—q = UgWy T+ UsWq
= a=4

xe +yf
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Illustration 1 as Matrix Multiplication

vz
x|y |z

I
Xy |z

x vz
x 0y

/N
2
b
©
4
e
0
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Ilustration 2: Two-Dimensional Case

Kernal
-~ IO D

—

cw + dx +
gy + hz

™~ Feature map
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Advantages of CNNs

* Sparse interaction

* Reduces memory requirements

* Improves statistical efficiency 6&0”’0 °
e Parameter sharing G ° e ° °

 The same kernel are used repeatedly

* Equivariant representations
e transforming the input = transforming the output
« Useful when care only about the existence of a pattern, rather
than the location
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Other Layers: Activation Functions

e Activation functions determine whether a neuron is activated based
on its input, effectively deciding whether the input is important for
making a prediction.

10

*  RelU: 6(x) = max(0, x) Q: Any other benefit?

-10 M 10

Activation Functions
introduce non-linearity,
enabling the network to
learn complex patterns
and model intricate
relationships within data.

1
1+e—*

« Sigmoid: o(x) =

« tanh: o(x) = tanh(x)

AI-EDGE Summer REU Program
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Other Layers: Pooling Layer

 We use a pooling layer to downsize the inputs.

* For example, max pooling (2x2 filter and stride 2)

1 3 0 T
2 4 8 3 el
_________ A\
5 1 9 0
3 4 1 8
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Other Layers: Pooling Layer

 We use a pooling layer to downsize the inputs.

* For example, max pooling (2x2 filter and stride 2)

1 3 0 7
2 4 8 3 R S N
4 8
5 1 9 0
3 4 1 8
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Other Layers: Pooling Layer

 We use a pooling layer to downsize the inputs.

* For example, max pooling (2x2 filter and stride 2)

1 3 0 7

2 4 8 3
—> ! i

5 1 9 0
5 9

3 4 1 8
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A Case of CNNs

RELU RELU RELU RELU RELU RELU
CONV lCONVl CONV lCONVl CONV lCONVl

blb bbby

car
truck
Blfplane

Ship

NHL R 0

|
|

BIELEERE

horse

-

-
.
P
=
|
}V"
-
l/y‘,‘
—
)
— |~
—l

T I TRV ET

Wi
Ll

Q: How to update the parameters of each layer?
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