

Some Basics of Machine Learning

Hongbo Li, Postdoc Scholar Time: 2:00pm – 3:00pm, June 10, 2025

Slide Credits

- 1. Introduction to Machine Learning, 10-401, by Maria-Florina Balcan, Carnegie Mellon University: <u>https://www.cs.cmu.edu/~ninamf/courses/401sp18/lectures.shtml</u>
- 2. *Machine Learning*, CS4/5780, by Kilian Weinberger, Cornell University: <u>https://www.cs.cornell.edu/courses/cs4780/2017sp/</u>
- *3. Intro to Machine Learning*, CS4/CS5780, by Wen Sun, Cornell University: <u>https://www.cs.cornell.edu/courses/cs4780/2023fa/</u>
- 4. Deep Learning for Computer Vision, CS231n, by Fei-Fei Li et. al., Standford University: <u>https://cs231n.stanford.edu</u>

Index

• Part I: Linear Classifier

- Part II: Gradient Descent (and Beyond)
- Part III: Linear Regression

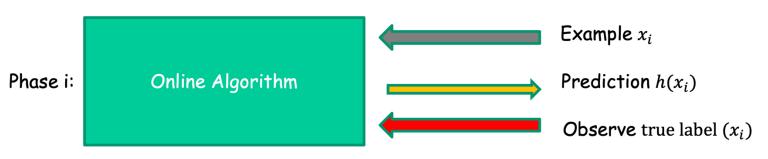
• Part IV: Convolutional Neural Networks (CNNs)

Part I: Linear Classifier

Online Learning Model

• Examples arrive sequentially.

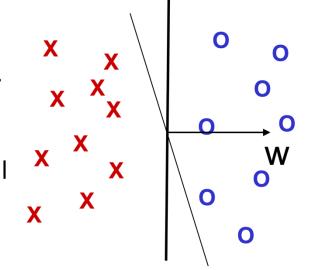
For i=1, 2, ..., :



- Objective: Minimize the number of mistakes.
- Applications:
 - Email classification (distribution of both spam and regular mail changes over time).
 - Recommendation systems.
 - ...

Linear Separators

- Feature space $X \in \mathbb{R}^d$.
- Hypothesis class of linear decision surfaces in \mathbb{R}^d .
 - $h(x) = \mathbf{W}^T x + w_0$, where $\mathbf{W} = (w_1, \dots, w_d) \in \mathbb{R}^d$
 - If h(x) ≥ 0, then label x as +, otherwise label it as -



Trick: Without loss of generality $w_0 = 0$.

Proof: Can simulate a non-zero threshold with a dummy input feature x_0 that is always set up to 1.

- $x = (x_1, ..., x_d) \to \tilde{x} = (x_1, ..., x_d, 1)$
- $W^T x + w_0 \ge 0$ iff $\widetilde{W}^T \widetilde{x} \ge 0$, where $\widetilde{W} = (w_1, \dots, w_d, w_0)$

Figure from Balcan (2018)

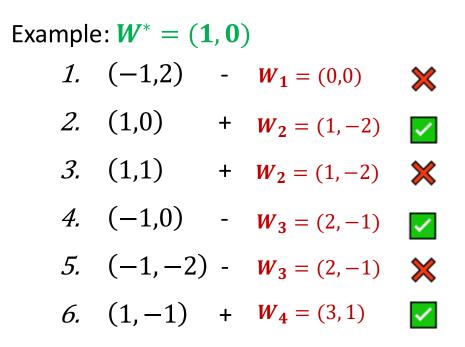
Linear Separators: Perceptron Algorithm

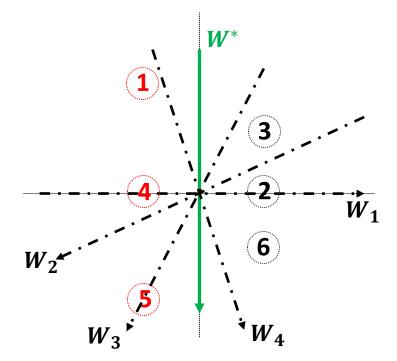
- Set t = 1, start with the all zero vector $W_1 = (0, ..., 0)$.
- Given example x, predict positive iff $W_t^T x \ge 0$.
- On a mistake, update as follows:
 - Mistake on positive, then update $W_{t+1} \leftarrow W_t + x$
 - Mistake on negative, then update $W_{t+1} \leftarrow W_t x$

Natural *greedy* procedure:

- If true label of x is +1 and W_t incorrect on x, we have $W_t^T x < 0$.
- By Perceptron Algorithm, we have $W_{t+1}^T x \leftarrow W_t^T x + x^T x = W_t^T x + ||x||^2$.
- Then, there will be more chance that W_{t+1} classifies x correctly.
- Similar for mistakes on negative examples.

Perceptron Algorithm: Practice





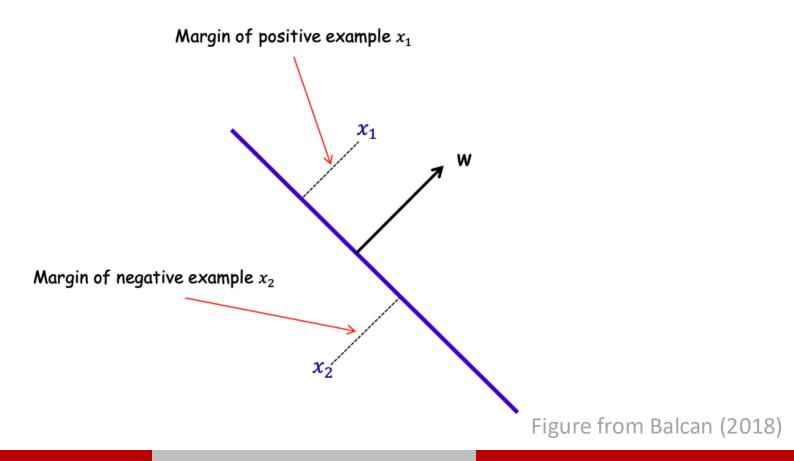
Algorithm:

- Set t = 1, start with the all zero vector $W_1 = (0, ..., 0)$.
- Given example x, predict positive iff $W_t^T x \ge 0$.
- On a mistake, update as follows:
 - Mistake on positive, then update $W_{t+1} \leftarrow W_t + x$
 - Mistake on negative, then update $W_{t+1} \leftarrow W_t x$

 $W_1 = (0,0)$ $W_2 = W_1 - (-1,2) = (1,-2)$ $W_3 = W_2 + (1,1) = (2,-1)$ $W_4 = W_3 - (-1,-2) = (3,1)$

Geometric Margin

Definition: The margin of example x w.r.t a linear separator W is the distance from x to the plane $W^T x = 0$ (or the negative if on wrong side)



Geometric Margin

Definition: The margin of example x w.r.t a linear separator W is the distance from x to the plane $W^T x = 0$ (or the negative if on wrong side)

Definition: The margin γ_W of a set of example *S* w.r.t a linear separator *W* is the smallest margin over points $x \in S$.

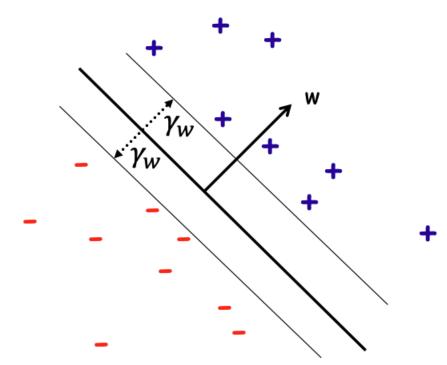


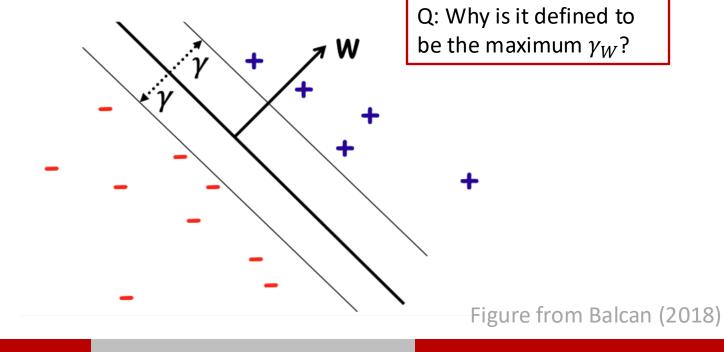
Figure from Balcan (2018)

Geometric Margin

Definition: The margin of example x w.r.t a linear separator W is the distance from x to the plane $W^T x = 0$ (or the negative if on wrong side)

Definition: The margin γ_W of a set of example *S* w.r.t a linear separator *W* is the smallest margin over points $x \in S$.

Definition: The margin γ of a set of example S is the maximum γ_W over all linear separators w.



Perceptron: Mistake Bound

Guarantee: If data has margin γ and all points inside a ball of radius R, then Perceptron makes $\leq (R/\gamma)^2$ mistakes.

(Normalized margin: multiplying all points by 100, or dividing all points by 100, doesn't change the number of mistakes: algo is invariant to scaling.)

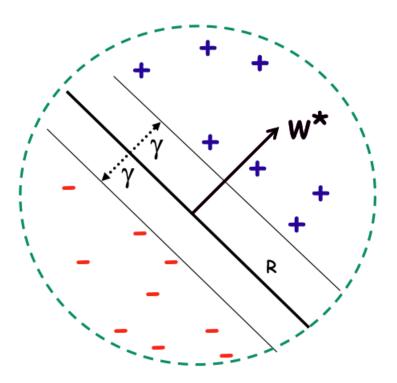


Figure from Balcan (2018)

Perceptron: Mistake Bound

Guarantee: If data has margin γ and all points inside a ball of radius R, then Perceptron makes $\leq (R/\gamma)^2$ mistakes.

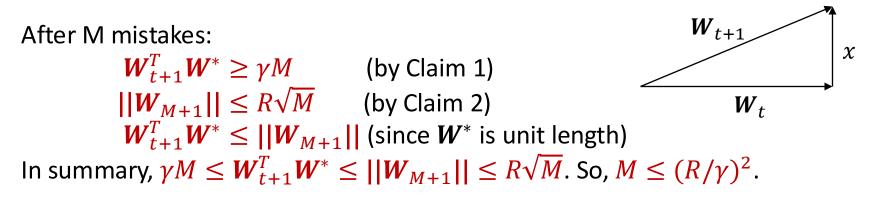
Update rule:

- Mistake on positive: $W_{t+1} \leftarrow W_t + x$
- Mistake on negative: $W_{t+1} \leftarrow W_t x$

Proof:

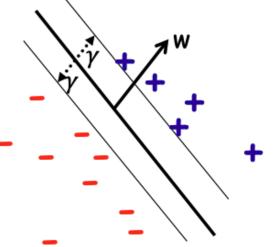
Idea: analyze $W_t^T W^*$ and $||W_t||$, where W^* is the max-margin separator with $||W^*|| = 1$.

- Claim 1: $W_{t+1}^T W^* \ge W_t^T W^* + \gamma$. (because $W_t^T x \ge \gamma$)
- Claim 2: $||W_{t+1}||^2 \le ||W_t||^2 + R^2$. (by Pythagorean Theorem)



Margin Important Theme in ML

- If large margin, the number of mistakes Perceptron makes is small (independent on the dimension of the ambient space)
- Large margin can help prevent overfitting.
- **Support Vector Machines (SVMs)** directly optimize for the maximum margin separator:
 - <u>Input</u>: $S = \{(x_1, y_1), \dots, (x_m, y_m)\};$
 - Find: some W and maximum γ where:
 - ||W|| = 1
 - For all $i \in \{1, ..., m\}, y_i W^T \ge \gamma$
 - <u>Output</u>: maximum margin separator over S.



Part II: Gradient Descent (and Beyond)

Taylor Expansion

- How can you minimize a function l(W) if you don't know much about it?
- The trick is to assume it is much simpler than it really is.
- This can be done with Taylor's approximation.
- Given a small norm $||s||_2$ (i.e., W + s is very close to W), we can approximate the function l(W + s) by its first and second derivatives:

$$l(W + s) \approx l(W) + g(W) \cdot s \text{ (Gradient Descent)}$$
$$l(W + s) \approx l(W) + g(W) \cdot s + \frac{1}{2}s^{T} \cdot H(W) \cdot s \text{ (Newton's Method)}$$

Here $g(x) = \nabla l(W)$ is the gradient and $H(x) = \nabla^2 l(W)$ is the Hessian of l.

Gradient Descent (GD)

- In GD, we only use the gradient (first order).
- We assume the function l around W is linear and behaves like $l(W) + g(W) \cdot s$.
- Our objective is to find a vector *s* that minimizes function *l*.
- In steepest descent we simply set

$$s = -\eta \cdot g(\boldsymbol{W})$$

for some small $\eta > 0$.

• It is straight-forward to prove that in this case l(W + s) < l(W):

 $l(\mathbf{W} + (-\eta \cdot g(\mathbf{W}))) \approx l(\mathbf{W}) - \eta \cdot g(\mathbf{W})^T g(\mathbf{W}) < l(\mathbf{W})$

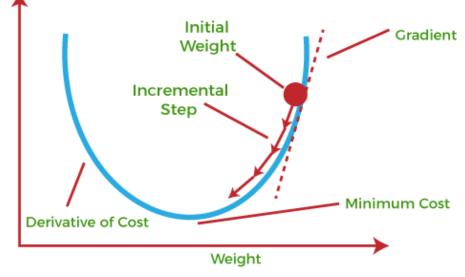
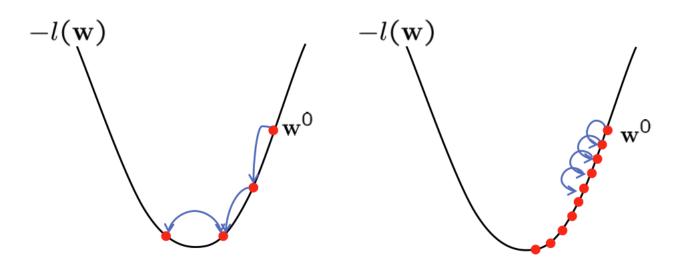


Figure from Kharkar (2023)

GD: Learning Rate

- Setting the learning rate $\eta > 0$ is a dark art.
 - Large $\eta \implies$ Fast convergence but larger residual error $||W^{t+1} W^t||_2$, with possible oscillations.
 - Small $\eta \Rightarrow$ Slow convergence but small residual error.



• A safe (but sometimes slow) choice is to set $\eta = \frac{1}{t}$, which guarantees that it will eventually become small enough to converge.

Figure from Balcan (2018)

GD: In Practice

In ML, the loss we minimize typically has some special form, e.g.,

$$l(W) = \frac{1}{n} \sum_{i=1}^{n} \ln(1 + \exp(-y_i(W^T x_i)))$$

Average over n data points

To compute the gradient $\nabla l(W)$, we need to enumerate all n training data points, which can be very slow!

Stochastic GD (SGD) to Rescue

In ML, the loss we minimize typically has some special form, e.g.,

$$l(W) = \frac{1}{n} \sum_{i=1}^{n} \ln(1 + \exp(-y_i(W^T x_i)))$$

Average over n data points

Idea: Randomly sample a data point (x, y), use $\nabla l(x, y; W)$ to replace $\nabla l(W)$.

Stochastic GD (SGD)

- Goal: minimize $l(W) = \frac{1}{n} \sum_{i=1}^{n} l(x_i, y_i; W)$
- Initialize: $W^0 \in \mathbb{R}^d$ randomly
- Iterate until convergence:
 - 1. Randomly sample a point (x_i, y_i) from the n data points
 - 2. Compute noisy gradient $\tilde{g}^t = \nabla l(x_i, y_i; W)|_{W=W^t}$
 - 3. Update (GD): $W^{t+1} = W^t \eta \tilde{g}^t$

Why Can SGD Work?

Claim: the random noisy gradient is an unbiased estimate of the true gradient

$$\mathbb{E}[\nabla l(x_i, y_i; W)] = \frac{1}{n} \sum_{i=1}^n \nabla l(x_i, y_i; W) = \nabla \left[\frac{1}{n} \sum_{i=1}^n l(x_i, y_i; W)\right] = \nabla l(W)$$

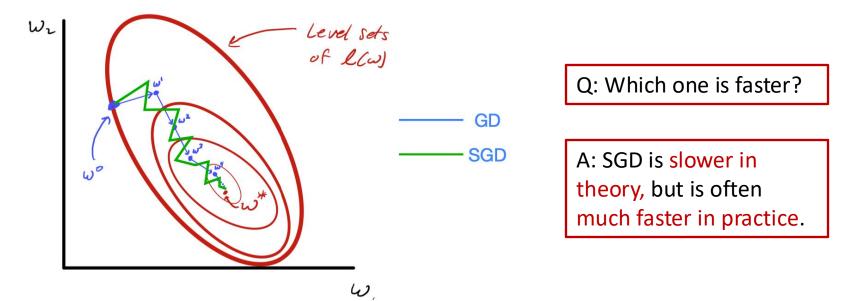


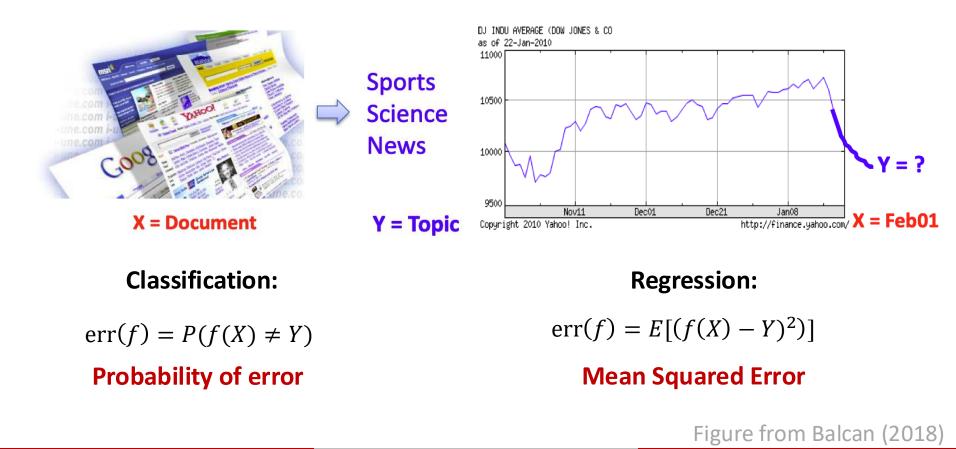
Figure from Sun (2022)

Part III: Linear Regression

From Discrete to Continuous Labels

Supervised Learning

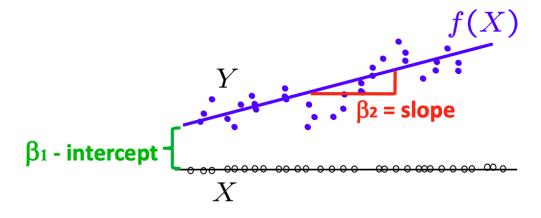
Goal: Construct a predictor $f: X \rightarrow Y$ to minimize a risk (error measure) err(f).



Some Basics of ML

Linear Regression

• Unit-variate case: $f(X) = \beta_1 + \beta_2 X$.



- Multi-variate case: $f(X) = f(X^{(1)}, ..., X^{(p)}) = \beta_1 X^{(1)} + \beta_2 X^{(2)} + ... + \beta_p X^{(p)}$ $= X\beta$, where $X = [X^{(1)} ... X^{(p)}]$, $\beta = [\beta_1 ... \beta_p]^T$
- Least square estimator: $\hat{f} = \arg \min_{f \in F} \frac{1}{n} \sum_{i=1}^{n} (f(X_i) Y_i)^2$, where F is the class of linear functions.

Figure from Balcan (2018)

AI-EDGE Summer REU Program

Least Squares Estimator

•
$$\hat{f} = \arg\min_{f \in F} \frac{1}{n} \sum_{i=1}^{n} (f(X_i) - Y_i)^2$$

• $\hat{\beta} = \arg\min_{\beta} \frac{1}{n} \sum_{i=1}^{n} (X_i\beta - Y_i)^2$

$$= \arg\min_{\beta}^{\beta} \frac{1}{n} (\mathbf{X}\beta - \mathbf{Y})^{T} (\mathbf{X}\beta - \mathbf{Y})$$

$$\mathbf{X} = \begin{bmatrix} X_1 \\ \dots \\ X_n \end{bmatrix} = \begin{bmatrix} X_1^{(1)} & \cdots & X_1^{(p)} \\ \vdots & \ddots & \vdots \\ X_n^{(1)} & \cdots & X_n^{(p)} \end{bmatrix}, \quad \mathbf{Y} = \begin{bmatrix} Y_1 \\ \dots \\ Y_n \end{bmatrix}.$$

Least Squares Estimator

•
$$\hat{\beta} = \arg \min_{\beta} \frac{1}{n} (\mathbf{X}\beta - \mathbf{Y})^T (\mathbf{X}\beta - \mathbf{Y}) = \arg \min_{\beta} J(\beta)$$

•
$$J(\beta) = (\mathbf{X}\beta - \mathbf{Y})^T (\mathbf{X}\beta - \mathbf{Y})$$

• $\frac{\partial J(\beta)}{\partial I_{\beta}} |_{\beta} = 0$

$$\frac{\partial \beta}{\partial \beta} |_{\widehat{\beta}} = 0$$

•
$$(\mathbf{X}^T \mathbf{X})\hat{\boldsymbol{\beta}} = \mathbf{X}^T \mathbf{Y}$$

• If $\mathbf{X}^T \mathbf{X}$ is invertible,

$$\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y} \qquad \hat{f}(\mathbf{X}) = \mathbf{X} \hat{\beta}$$

Least Squares Estimator: Verification

•
$$\hat{f}(\mathbf{X}) = \mathbf{X}\hat{\beta} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}\mathbf{Y}^T$$

• We calculate

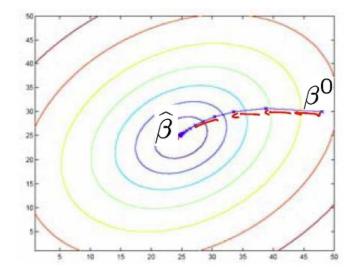
$$\mathbf{X}^{T}(\hat{f}(\mathbf{X}) - \mathbf{Y}) = \mathbf{X}^{T}\mathbf{X}(\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}\mathbf{Y}^{T} - \mathbf{X}\mathbf{Y}^{T} = \mathbf{0}.$$

Revisiting Gradient Descent

• Even when **X**^T**X** is invertible, might be computationally expensive if **X** is huge.

$$\hat{\beta} = \arg \min_{\beta} \frac{1}{n} (\mathbf{X}\beta - \mathbf{Y})^T (\mathbf{X}\beta - \mathbf{Y}) = \arg \min_{\beta} J(\beta)$$

- Gradient Descent since $J(\beta)$ is convex
 - Initialize: β^0
 - <u>Update</u>: $\beta^{t+1} = \beta^t \frac{\eta}{2} \mathbf{X}^T \frac{\partial J(\beta)}{\partial \beta} |_t$ = $\beta^t - \eta \mathbf{X}^T (\mathbf{X} \beta^t - \mathbf{Y})$
 - <u>Stop</u>: when some criterion met, e.g., fixed # iterations, or $\frac{\partial J(\beta)}{\partial \beta}|_t < \varepsilon$.



Q: What about Stochastic GD for linear regression?

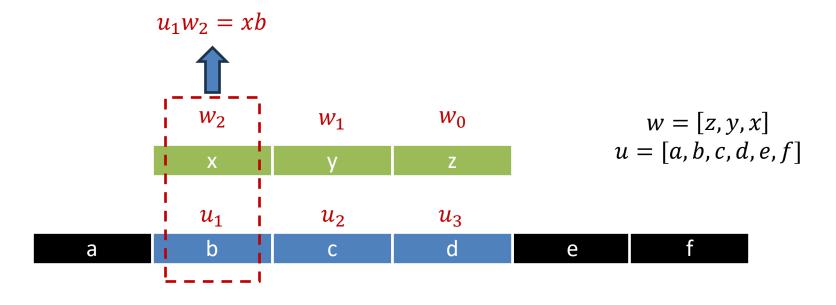
Figure from Balcan (2018)

Part IV: Convolutional Neural Networks (CNNs)

Motivation of Convolution

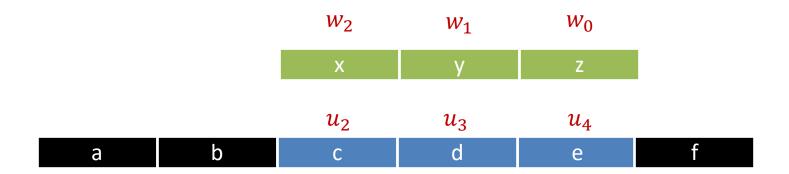
- Suppose we track the location of a spaceship with a laser sensor. The laser sensor provides a single output u(t), which is the position of the spaceship at second t.
- Suppose sensor is noisy. To obtain a less noisy estimate of the spaceship's position, we average several measurements. More recent measurements are more relevant, so we use a weighted average that gives more weight to recent measurements.
- Use a weighting function w(a), where a is the age of a measurement. If we apply such a weighted average operation at every moment, we obtain a new function s providing a smoothed estimate of the position of the spaceship:

$$s_t = \sum_{a=-\infty}^{+\infty} u_a w_{t-a}$$

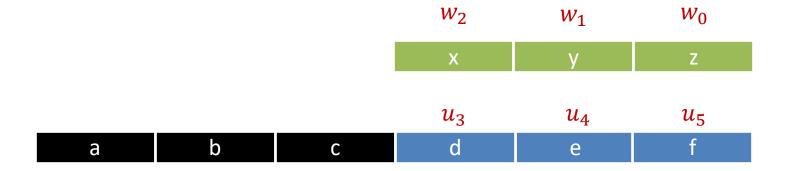


$$s_{t} = \sum_{a=-\infty}^{+\infty} u_{a} w_{t-a} \implies s_{3} = \sum_{a=1}^{3} u_{a} w_{3-a} = u_{1} w_{2} + u_{2} w_{1} + u_{3} w_{0}$$
$$= xb + yc + zd$$

Q: What is *s*₃ here?



$$s_{t} = \sum_{a=-\infty}^{+\infty} u_{a} w_{t-a} \implies s_{4} = \sum_{a=2}^{4} u_{a} w_{4-a} = u_{2} w_{2} + u_{3} w_{1} + u_{4} w_{0}$$
$$= xc + yd + ze$$



$$s_{t} = \sum_{a=-\infty}^{+\infty} u_{a} w_{t-a} \implies s_{5} = \sum_{a=3}^{5} u_{a} w_{5-a} = u_{3} w_{2} + u_{4} w_{1} + u_{5} w_{0}$$
$$= xd + ye + zf$$

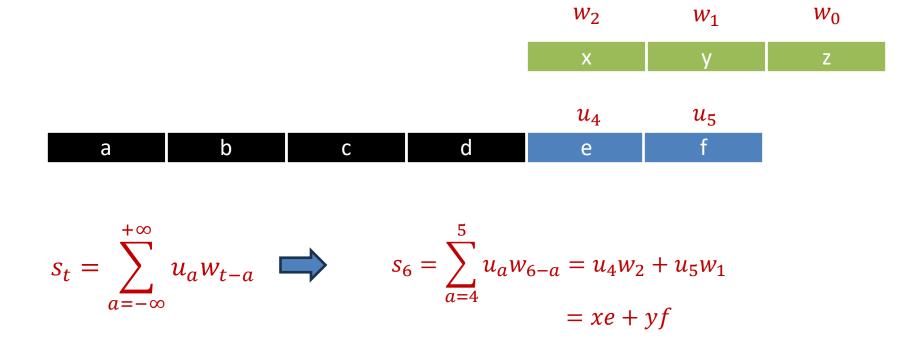


Illustration 1 as Matrix Multiplication

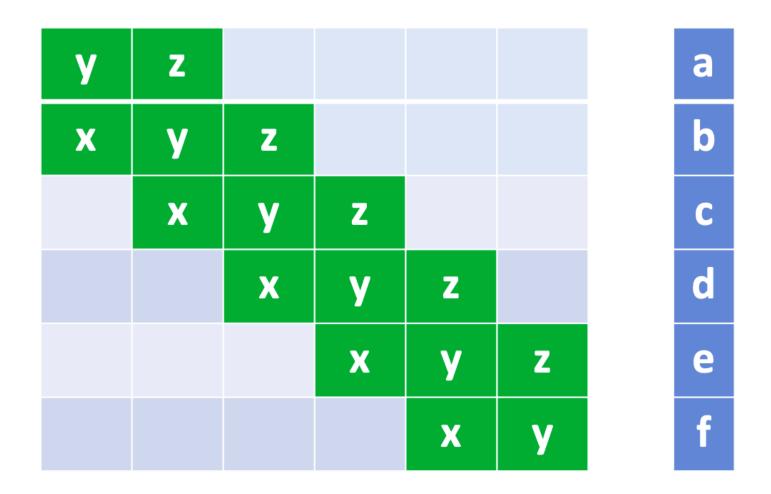


Illustration 2: Two-Dimensional Case

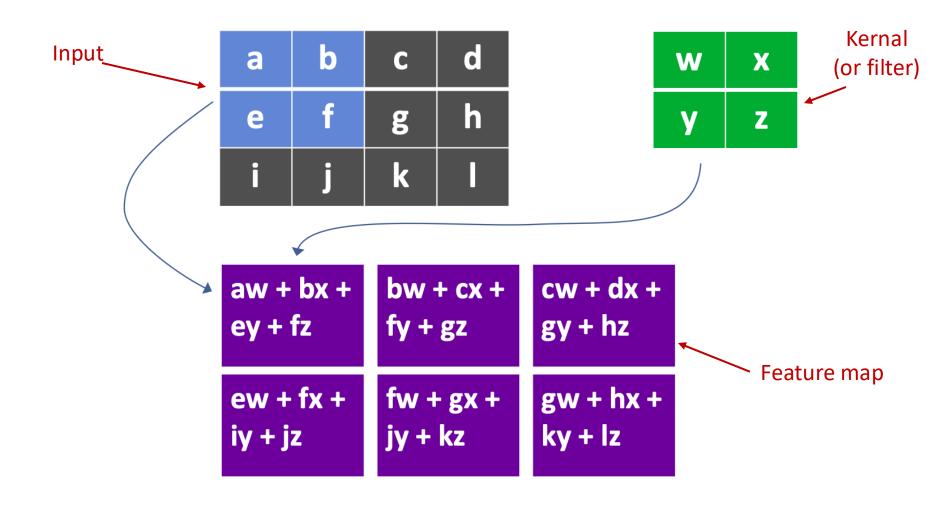


Figure from Balcan (2018)

Advantages of CNNs

- Sparse interaction
 - Reduces memory requirements
 - Improves statistical efficiency
- Parameter sharing
 - The same kernel are used repeatedly
- Equivariant representations
 - transforming the input = transforming the output
 - Useful when care only about the existence of a pattern, rather than the location

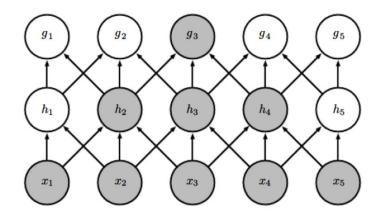
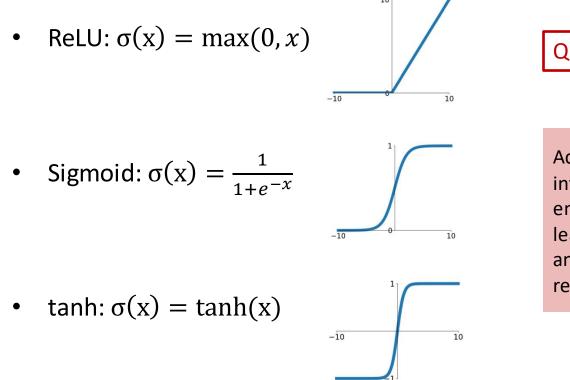


Figure from *Deep Learning*, by Goodfellow, Bengio, and Courville

Other Layers: Activation Functions

• Activation functions determine whether a neuron is activated based on its input, effectively deciding whether the input is important for making a prediction.

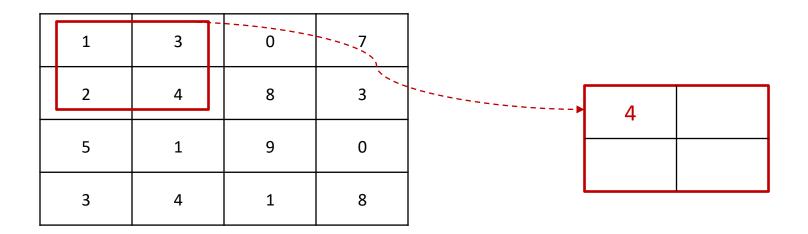


Q: Any other benefit?

Activation Functions introduce non-linearity, enabling the network to learn complex patterns and model intricate relationships within data.

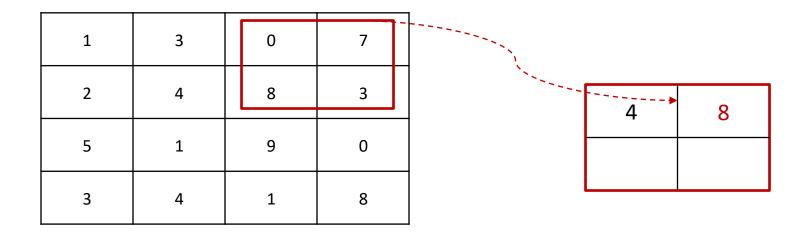
Other Layers: Pooling Layer

- We use a pooling layer to downsize the inputs.
- For example, max pooling (2x2 filter and stride 2)



Other Layers: Pooling Layer

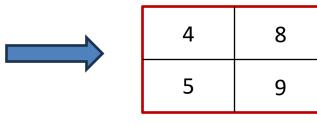
- We use a pooling layer to downsize the inputs.
- For example, max pooling (2x2 filter and stride 2)



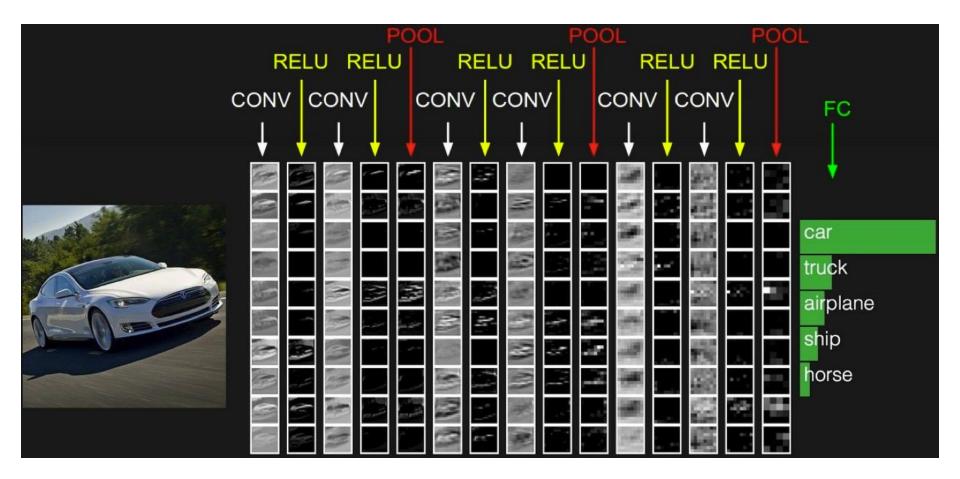
Other Layers: Pooling Layer

- We use a pooling layer to downsize the inputs.
- For example, max pooling (2x2 filter and stride 2)

1	3	0	7
2	4	8	3
5	1	9	0
3	4	1	8



A Case of CNNs



Q: How to update the parameters of each layer?

Figure from *Feifei Li & Andrej Karpathy (2016)*

Some Basics of ML

