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Part I: History of LLMs
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A Very Approximate Timeline

• 1990 Static Word Embeddings

• 2003 Neural Language Model

• 2008 Multi-Task Learning

• 2015 Attention

• 2017 Transformer

• 2018 Contextual Word Embeddings and Pretraining

• 2019 Prompting

• …
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Large (n-Gram) Language Models

• The earliest (truly) large language models were Google n-grams:
• 2006: first release, English n-grams

• Trained on 1 trillion tokens of web text (95 billion sentences)
• Included 1-grams, 2-grams, 3-grams, 4-grams, and 5-grams

• 2009-2010: n-grams in Japanese, Chinese, Swedish, Spanish, Romanian, 
Portuguese, Polish, Dutch, Italian, French, German, Czech

Number of unigrams: 13,588,391
Number of bigrams: 314,843,401
Number of trigrams: 977,069,902
Number of fourgrams: 1,313,818,354
Number of fivegrams: 1,176,470,663

English n-gram 
model is ~3 billion 

parameters

Q: Is this a large Training set? Q: Is this a large model?

Yes! Yes!
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How Large are LLMs?

Model Creators Year of 
release

Training Data 
(# tokens)

Model Size (# 
parameters)

GPT-2 OpenAI 2019 ~10 billion 1.5 billion

GPT-3 OpenAI 2020 300 billion 175 billion

LLaMA Meta 2023 1.4 trillion 70 billion

LLaMA-2 Meta 2023 2 trillion 70 billion

GPT-4 OpenAI 2023 13 trillion 1.2 trillion

Gemini (Ultra) Google 2023 3.6 trillion ? (1 trillion+)

DeepSeek-v1 DeepSeek 2024 2 trillion 67 billion

DeepSeek-v2 DeepSeek 2024 8.1 trillion 236 billion

LLaMA-3 Meta 2024 15 trillion 405 billion

DeepSeek-v3 DeepSeek 2024 14.8 trillion 671 billion

Gemini 2.5 Google 2025 ? ?

GPT-4.5 OpenAI 2025 ? ? (5-10 trillion)

Data source: Google
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Part II: Attention Mechanism
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Noisy Channel Models

• Prior to 2017, two tasks relied heavily on language models:
• Speech recognition
• Machine translation

• Definition: a noisy channel model combines a transduction model 
(probability of converting y to x) with a language model (probability of y)

• Goal: to recover y from x
• For speech: x is acoustic signal, y is transcription
• For machine translation: x is sentence in source language, y is sentence 

in target language

ො𝑦 = arg max
𝑦

𝑝 𝑦 𝑥 = arg max
𝑦

𝑝 𝑥 𝑦 𝑝(𝑦)

transduction 
model

language 
model
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Recurrent Neural Networks (RNNs)

Key idea:
1) Convert all previous words to a fixed length vector
2) Define distribution 𝑝 𝑤𝑡 𝑓𝜃 𝑤𝑡−1, … , 𝑤1  that conditions on 

the vector ℎ𝑡 = 𝑓𝜃 𝑤𝑡−1, … , 𝑤1 .

Figure from: Virtue and Gormley (2025)
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Problem with Static Embeddings (word2vec)

They are static!

The embedding for a word doesn’t reflect how its meaning changes in text.

The chicken didn’t cross the road because it was too tired

What is the meaning represented in the static embedding for “it”?
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Contextual Embeddings

• Intuition: a representation of meaning of a word should be different 
in different contexts!

• Contextual Embedding: each word has a different vector that 
expresses different meanings depending on the surrounding words

• How to compute contextual embeddings?

• Attention
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Contextual Embeddings

The chicken didn’t cross the road because it

What should be the properties of “it”?

The chicken didn’t cross the road because it was too tired

The chicken didn’t cross the road because it was too wide

At this point in the sentence, it's probably referring to either the chicken or the street
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Intuition of Attention

• Build up the contextual embedding from a word by selectively 
integrating information from all the neighboring words

• We say that a word "attends to" some neighboring words more than 
others
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Intuition of Attention
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Attention Definition

• A mechanism for helping compute the embedding for a token by 
selectively attending to and integrating information from surrounding 
tokens (at the previous layer).

• More formally: a method for doing a weighted sum of vectors.
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Attention is Left-to-Right

attention attention attention attention attention

𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟒 𝒂𝟓

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

Self-Attention
Layer
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Simplified Version of Attention

• Given a sequence of token embeddings:

• 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥𝑖

• Produce: 𝑎𝑖 =a weighted sum of 𝑥1 through 𝑥7 (and 𝑥𝑖)

• Weighted by their similarity to 𝒙𝒊

 score 𝑥𝑖 , 𝑥𝑗 = 𝑥𝑖 ∙ 𝑥𝑗

 𝛼𝑖𝑗 = softmax score 𝑥𝑖 , 𝑥𝑗 , ∀𝑗 ≤ 𝑖

 𝒂𝒊 = σ𝑗≤𝑖 𝛼𝑖𝑗 𝑥𝑗

 
Given a vector 𝐳 = [𝑧1, 𝑧2, … , 𝑧𝑛], the softmax is: softmax 𝑧𝑖 =

𝑒𝑧𝑖

σ𝑗=1
𝑛 𝑒

𝑧𝑗
. 

This is applied element-wise to produce: softmax 𝒛 =
𝑒𝑧1

σ𝑗 𝑒
𝑧𝑗

,
𝑒𝑧2

σ𝑗 𝑒
𝑧𝑗

, … ,
𝑒𝑧𝑛

σ𝑗 𝑒
𝑧𝑗
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Intuition of Attention
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An Actual Attention Head

• High-level idea: instead of using vectors (like 𝑥𝑖  and 𝑥4) directly, we’ll 
represent 3 separate roles each vector 𝑥𝑖  players:

• Query: As the current element being compared to the preceding 
inputs. 

• Key: As a preceding input that is being compared to the current 
element to determine a similarity.

• Value: A value of a preceding element that gets weighted and 
summed.

Information routing:
• You can think of keys as addresses, queries as questions, 

and values as answers.
• You match the query to the key (to get a weight), and then 

retrieve the value.
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An Actual Attention Head

• We will use matrices to project each vector 𝑥𝑖  into a representation of 
its role as query, key, value:

• Query: 𝑾𝑄

• Key: 𝑾𝐾  

• Value: 𝑾𝑉

𝒒𝑖 = 𝑥𝑖𝑾𝑄;   𝒌𝑖 = 𝑥𝑖𝑾𝐾  ;  𝒗𝑖 = 𝑥𝑖𝑾𝑉
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An Actual Attention Head

Given these 3 representation of 𝑥𝑖

𝒒𝑖 = 𝑥𝑖𝑾𝑄;   𝒌𝑖 = 𝑥𝑖𝑾𝐾  ;  𝒗𝑖 = 𝑥𝑖𝑾𝑉

To compute similarity of current element 𝑥𝑖  with some prior element 𝑥𝑗 , 

we will use dot product between 𝑞𝑖  and 𝑘𝑗. 

Instead of summing up 𝑥𝑗 , we will sum up 𝑣𝑗 . Q: Why?

A: Because we don't want to directly 

mix the raw inputs 𝒙𝒋. We want to 

mix task-specific transformed 
representations— that’s what 
the values 𝒗𝒋 are.
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An Actual Attention Head: Final Equations

𝒒𝑖 = 𝑥𝑖𝑾𝑄;  𝒌𝑗 = 𝑥𝑗𝑾𝐾  ;  𝒗𝑗 = 𝑥𝑗𝑾𝑉

score 𝑥𝑖 , 𝑥𝑗 =
𝒒𝑖 ∙ 𝒌𝑗

𝑑𝑘

𝛼𝑖𝑗 = softmax score 𝑥𝑖 , 𝑥𝑗 , ∀𝑗 ≤ 𝑖

 𝒂𝒊 = σ𝑗≤𝑖 𝛼𝑖𝑗 𝒗𝑗Q: Why divide by 𝑑𝑘?

1. Dot product grows with vector dimension:
• Scaling keeps values small and controlled.

2. Softmax becomes too peaky without scaling:
• Scaling softens softmax output.

3. Variance of scores too high: 
• Normalizes score magnitude to stabilize training.
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Calculate the Value of 𝒂𝟑

Figure from: Jurafsky and Martin (2024)
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Multi-Head Attention

• Instead of one attention head, we’ll have lots of them!

• Intuition: each head might be attending to the context for different 
purposes

• Different linguistic relationships or patterns in the context

𝒒𝑖
𝑐 = 𝑥𝑖𝑾𝑸𝒄;     𝒌𝑗

𝑐 = 𝑥𝑗𝑾𝑲𝒄; 𝒗𝑗
𝑐 = 𝑥𝑗𝑾𝑽𝒄; ∀𝑐 ∈ {1, … , ℎ}

score𝑐 𝑥𝑖 , 𝑥𝑗 =
𝒒𝑖

𝑐 ∙ 𝒌𝑗
𝑐

𝑑𝑘

𝛼𝑖𝑗 = softmax score𝑐 𝑥𝑖 , 𝑥𝑗 , ∀𝑗 ≤ 𝑖

𝐡𝐞𝐚𝐝𝑖
𝑐 = 

𝑗≤𝑖

𝛼𝑖𝑗
𝑐 𝒗𝑗

𝑐

 𝒂𝒊 = (𝐡𝐞𝐚𝐝1⨁𝐡𝐞𝐚𝐝2 ⨁… ⨁𝐡𝐞𝐚𝐝ℎ)𝑾𝑶

  MultiHeadAttention 𝑥𝑗 , [𝑥1, … , 𝑥𝑁] = 𝒂𝒊
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Part III: Transformer Language 

Models
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Transformer Language Model

Figure from: Jurafsky and Martin (2024)
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Transformer Language Model

Figure from: Jurafsky and Martin (2024)

• The residual stream: each token 
gets passed up and modified

Q: Why is residual stream important?

1. It prevents vanishing gradients 
during training (deep networks).

2. It lets each layer refine the 
representation rather than 
overwrite it.

3. Residual stream is also a 
memory trace of the input that's 
updated step-by-step.
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Transformer Language Model

Figure from: Jurafsky and Martin (2024)

• The residual stream: each token 
gets passed up and modified

• We’ll need non-linearities, so 
a feedforward layer:

FFN 𝑥𝑖 = ReLU 𝑥𝑖𝑾1 + 𝑏1 𝑾𝟐 + 𝑏2

• Layer norm: the vector 𝑥𝑖  is 
normalized twice 
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Layer Norm

𝜇 =
1

𝑑


𝑖=1

𝑑

𝑥𝑖

σ =
1

𝑑


𝑖=1

𝑑

(𝑥𝑖 − 𝝁)2

ෝ𝒙 =
(𝒙 − 𝝁)

σ

 LayerNorm 𝒙 = 𝛾
(𝒙−𝝁)

σ
+ 𝛽

Layer norm is a variation of the z-score from statistics, applied to a single 
vector in a hidden layer

mean of the features

standard deviation

learnable scale and shift parameters

Q: What’s the function of Layer norm?

1. Stabilizes training: it prevents 
exploding or vanishing gradients.

2. Makes the optimization landscape 
smoother by keeping layer inputs 
at a consistent scale.

3. Allows deeper networks (like 
Transformers) to train faster and 
more reliably.

z-score 
(standardization)
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Putting Together

Figure from: Jurafsky and Martin (2024)

𝑡𝑖
1 = LayerNorm(𝑥𝑖)

𝑡𝑖
2 = MultiHeadAttention(𝑡𝑖

1, [𝑥1
1, … , 𝑥𝑁

1 ])

𝑡𝑖
3 = 𝑡𝑖

2 + 𝑥𝑖

𝑡𝑖
4 = LayerNorm(𝑡𝑖

3)

𝑡𝑖
5 = FFN(𝑡𝑖

4)

ℎ𝑖 = 𝑡𝑖
5 + 𝑡𝑖

3 𝑡𝑖
1

𝑡𝑖
2𝑡𝑖

3

𝑡𝑖
4

𝑡𝑖
5
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Part IV: Implementing a Transformer LM
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Parallelizing Computation Using 𝑿 

 𝑸 = 𝑿𝑾𝑸; 𝑲 = 𝑿𝑾𝑲; 𝑽 = 𝑿𝑾𝑽;

• For attention/transformer block we’ve been computing a single output 
at a single time step 𝑖 in a single residual stream.

• But we can pack the 𝑁 tokens of the input sequence into a single matrix 
𝑿 of size [𝑁 × 𝑑].

• Each row of 𝑿 is the embedding of one token of the input

• 𝑿 can have 1K-32K rows, each of the dimensionality of the embedding 𝑑 
(the model dimension)
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𝑸𝑲𝑇 

• Now can do a single matrix multiply to combine 𝑸 and 𝑲𝑇  

Figure from: Jurafsky and Martin (2024)
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Masking out the Future

𝑨 = softmax mask
𝑸𝑲𝑇

𝑑𝑘
𝑽;

• What is the mask function?

• 𝑸𝑲𝑇  has a score for each query dot every key, including those that 
follow the query

• Add −∞ to cells in upper triangle. 

• Then the softmax will turn it to 0.

Figure from: Jurafsky and Martin (2024)
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Attention Again

Figure from: Jurafsky and Martin (2024)
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Position Embeddings

• There are many methods, but we'll just describe the simplest: absolute 
position. 

• Each 𝐗𝐢 is just the sum of word and position embeddings. 

Figure from: Jurafsky and Martin (2024)
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