
Transformer Language Models

Hongbo Li, Postdoc Scholar
Time: 2:00pm – 3:00pm, June 12, 2025

2AI-EDGE Summer REU Program Transformer Language Models

Slide Credits

1. Generative AI, 10-423/10-623, by Pat Virtue and Matt Gormley,

Carnegie Mellon University:

https://www.cs.cmu.edu/~mgormley/courses/10423/

2. Speech and Language Processing, by Dan Jurafsky and James H.

Martin, Stanford University: https://web.stanford.edu/~jurafsky/slp3/

https://www.cs.cmu.edu/~mgormley/courses/10423/
https://web.stanford.edu/~jurafsky/slp3/

3AI-EDGE Summer REU Program Transformer Language Models

• Part I: History of Large Language Models

• Part II: Attention Mechanism

• Part III: Transformer Language Models

• Part IV: Implementing a Transformer LM

Index

4AI-EDGE Summer REU Program Transformer Language Models

Part I: History of LLMs

5AI-EDGE Summer REU Program Transformer Language Models

A Very Approximate Timeline

• 1990 Static Word Embeddings

• 2003 Neural Language Model

• 2008 Multi-Task Learning

• 2015 Attention

• 2017 Transformer

• 2018 Contextual Word Embeddings and Pretraining

• 2019 Prompting

• …

6AI-EDGE Summer REU Program Transformer Language Models

Large (n-Gram) Language Models

• The earliest (truly) large language models were Google n-grams:
• 2006: first release, English n-grams

• Trained on 1 trillion tokens of web text (95 billion sentences)
• Included 1-grams, 2-grams, 3-grams, 4-grams, and 5-grams

• 2009-2010: n-grams in Japanese, Chinese, Swedish, Spanish, Romanian,
Portuguese, Polish, Dutch, Italian, French, German, Czech

Number of unigrams: 13,588,391
Number of bigrams: 314,843,401
Number of trigrams: 977,069,902
Number of fourgrams: 1,313,818,354
Number of fivegrams: 1,176,470,663

English n-gram
model is ~3 billion

parameters

Q: Is this a large Training set? Q: Is this a large model?

Yes! Yes!

7AI-EDGE Summer REU Program Transformer Language Models

How Large are LLMs?

Model Creators Year of
release

Training Data
(# tokens)

Model Size (#
parameters)

GPT-2 OpenAI 2019 ~10 billion 1.5 billion

GPT-3 OpenAI 2020 300 billion 175 billion

LLaMA Meta 2023 1.4 trillion 70 billion

LLaMA-2 Meta 2023 2 trillion 70 billion

GPT-4 OpenAI 2023 13 trillion 1.2 trillion

Gemini (Ultra) Google 2023 3.6 trillion ? (1 trillion+)

DeepSeek-v1 DeepSeek 2024 2 trillion 67 billion

DeepSeek-v2 DeepSeek 2024 8.1 trillion 236 billion

LLaMA-3 Meta 2024 15 trillion 405 billion

DeepSeek-v3 DeepSeek 2024 14.8 trillion 671 billion

Gemini 2.5 Google 2025 ? ?

GPT-4.5 OpenAI 2025 ? ? (5-10 trillion)

Data source: Google

8AI-EDGE Summer REU Program Transformer Language Models

Part II: Attention Mechanism

9AI-EDGE Summer REU Program Transformer Language Models

Noisy Channel Models

• Prior to 2017, two tasks relied heavily on language models:
• Speech recognition
• Machine translation

• Definition: a noisy channel model combines a transduction model
(probability of converting y to x) with a language model (probability of y)

• Goal: to recover y from x
• For speech: x is acoustic signal, y is transcription
• For machine translation: x is sentence in source language, y is sentence

in target language

ො𝑦 = arg max
𝑦

𝑝 𝑦 𝑥 = arg max
𝑦

𝑝 𝑥 𝑦 𝑝(𝑦)

transduction
model

language
model

10AI-EDGE Summer REU Program Transformer Language Models

Recurrent Neural Networks (RNNs)

Key idea:
1) Convert all previous words to a fixed length vector
2) Define distribution 𝑝 𝑤𝑡 𝑓𝜃 𝑤𝑡−1, … , 𝑤1 that conditions on

the vector ℎ𝑡 = 𝑓𝜃 𝑤𝑡−1, … , 𝑤1 .

Figure from: Virtue and Gormley (2025)

11AI-EDGE Summer REU Program Transformer Language Models

Problem with Static Embeddings (word2vec)

They are static!

The embedding for a word doesn’t reflect how its meaning changes in text.

The chicken didn’t cross the road because it was too tired

What is the meaning represented in the static embedding for “it”?

12AI-EDGE Summer REU Program Transformer Language Models

Contextual Embeddings

• Intuition: a representation of meaning of a word should be different
in different contexts!

• Contextual Embedding: each word has a different vector that
expresses different meanings depending on the surrounding words

• How to compute contextual embeddings?

• Attention

13AI-EDGE Summer REU Program Transformer Language Models

Contextual Embeddings

The chicken didn’t cross the road because it

What should be the properties of “it”?

The chicken didn’t cross the road because it was too tired

The chicken didn’t cross the road because it was too wide

At this point in the sentence, it's probably referring to either the chicken or the street

14AI-EDGE Summer REU Program Transformer Language Models

Intuition of Attention

• Build up the contextual embedding from a word by selectively
integrating information from all the neighboring words

• We say that a word "attends to" some neighboring words more than
others

15AI-EDGE Summer REU Program Transformer Language Models

Intuition of Attention

Th
e

ch
ic

ke
n

d
id

n
’t

cr
o

ss

th
e

ro
ad

b
ec

au
se

it

w
as

to
o

ti
re

d

Layer k+1

Th
e

ch
ic

ke
n

d
id

n
’t

cr
o

ss

th
e

ro
ad

b
ec

au
se

it

w
as

to
o

ti
re

d

Layer k

Self-attention distribution

columns corresponding to input tokens

…

16AI-EDGE Summer REU Program Transformer Language Models

Attention Definition

• A mechanism for helping compute the embedding for a token by
selectively attending to and integrating information from surrounding
tokens (at the previous layer).

• More formally: a method for doing a weighted sum of vectors.

17AI-EDGE Summer REU Program Transformer Language Models

Attention is Left-to-Right

attention attention attention attention attention

𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟒 𝒂𝟓

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

Self-Attention
Layer

18AI-EDGE Summer REU Program Transformer Language Models

Simplified Version of Attention

• Given a sequence of token embeddings:

• 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥𝑖

• Produce: 𝑎𝑖 =a weighted sum of 𝑥1 through 𝑥7 (and 𝑥𝑖)

• Weighted by their similarity to 𝒙𝒊

 score 𝑥𝑖 , 𝑥𝑗 = 𝑥𝑖 ∙ 𝑥𝑗

 𝛼𝑖𝑗 = softmax score 𝑥𝑖 , 𝑥𝑗 , ∀𝑗 ≤ 𝑖

 𝒂𝒊 = σ𝑗≤𝑖 𝛼𝑖𝑗 𝑥𝑗

Given a vector 𝐳 = [𝑧1, 𝑧2, … , 𝑧𝑛], the softmax is: softmax 𝑧𝑖 =

𝑒𝑧𝑖

σ𝑗=1
𝑛 𝑒

𝑧𝑗
.

This is applied element-wise to produce: softmax 𝒛 =
𝑒𝑧1

σ𝑗 𝑒
𝑧𝑗

,
𝑒𝑧2

σ𝑗 𝑒
𝑧𝑗

, … ,
𝑒𝑧𝑛

σ𝑗 𝑒
𝑧𝑗

19AI-EDGE Summer REU Program Transformer Language Models

Intuition of Attention

Th
e

ch
ic

ke
n

d
id

n
’t

cr
o

ss

th
e

ro
ad

b
ec

au
se

it

w
as

to
o

ti
re

d

Layer k+1
Th

e

ch
ic

ke
n

d
id

n
’t

cr
o

ss

th
e

ro
ad

b
ec

au
se

it

w
as

to
o

ti
re

d

Layer k

Self-attention distribution

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥𝑖

20AI-EDGE Summer REU Program Transformer Language Models

An Actual Attention Head

• High-level idea: instead of using vectors (like 𝑥𝑖 and 𝑥4) directly, we’ll
represent 3 separate roles each vector 𝑥𝑖 players:

• Query: As the current element being compared to the preceding
inputs.

• Key: As a preceding input that is being compared to the current
element to determine a similarity.

• Value: A value of a preceding element that gets weighted and
summed.

Information routing:
• You can think of keys as addresses, queries as questions,

and values as answers.
• You match the query to the key (to get a weight), and then

retrieve the value.

21AI-EDGE Summer REU Program Transformer Language Models

Th
e

ch
ic

ke
n

d
id

n
’t

cr
o

ss

th
e

ro
ad

b
ec

au
se

it

w
as

to
o

ti
re

d

Layer k+1
Th

e

ch
ic

ke
n

d
id

n
’t

cr
o

ss

th
e

ro
ad

b
ec

au
se

it

w
as

to
o

ti
re

d

Layer k

Self-attention distribution

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥𝑖

query

k
v

k
v

k
v

k
v

k k k k
v v v v

keys
values

An Actual Attention Head

22AI-EDGE Summer REU Program Transformer Language Models

An Actual Attention Head

• We will use matrices to project each vector 𝑥𝑖 into a representation of
its role as query, key, value:

• Query: 𝑾𝑄

• Key: 𝑾𝐾

• Value: 𝑾𝑉

𝒒𝑖 = 𝑥𝑖𝑾𝑄; 𝒌𝑖 = 𝑥𝑖𝑾𝐾 ; 𝒗𝑖 = 𝑥𝑖𝑾𝑉

23AI-EDGE Summer REU Program Transformer Language Models

An Actual Attention Head

Given these 3 representation of 𝑥𝑖

𝒒𝑖 = 𝑥𝑖𝑾𝑄; 𝒌𝑖 = 𝑥𝑖𝑾𝐾 ; 𝒗𝑖 = 𝑥𝑖𝑾𝑉

To compute similarity of current element 𝑥𝑖 with some prior element 𝑥𝑗 ,

we will use dot product between 𝑞𝑖 and 𝑘𝑗.

Instead of summing up 𝑥𝑗 , we will sum up 𝑣𝑗 . Q: Why?

A: Because we don't want to directly

mix the raw inputs 𝒙𝒋. We want to

mix task-specific transformed
representations— that’s what
the values 𝒗𝒋 are.

24AI-EDGE Summer REU Program Transformer Language Models

An Actual Attention Head: Final Equations

𝒒𝑖 = 𝑥𝑖𝑾𝑄; 𝒌𝑗 = 𝑥𝑗𝑾𝐾 ; 𝒗𝑗 = 𝑥𝑗𝑾𝑉

score 𝑥𝑖 , 𝑥𝑗 =
𝒒𝑖 ∙ 𝒌𝑗

𝑑𝑘

𝛼𝑖𝑗 = softmax score 𝑥𝑖 , 𝑥𝑗 , ∀𝑗 ≤ 𝑖

 𝒂𝒊 = σ𝑗≤𝑖 𝛼𝑖𝑗 𝒗𝑗Q: Why divide by 𝑑𝑘?

1. Dot product grows with vector dimension:
• Scaling keeps values small and controlled.

2. Softmax becomes too peaky without scaling:
• Scaling softens softmax output.

3. Variance of scores too high:
• Normalizes score magnitude to stabilize training.

25AI-EDGE Summer REU Program Transformer Language Models

Calculate the Value of 𝒂𝟑

Figure from: Jurafsky and Martin (2024)

26AI-EDGE Summer REU Program Transformer Language Models

Multi-Head Attention

• Instead of one attention head, we’ll have lots of them!

• Intuition: each head might be attending to the context for different
purposes

• Different linguistic relationships or patterns in the context

𝒒𝑖
𝑐 = 𝑥𝑖𝑾𝑸𝒄; 𝒌𝑗

𝑐 = 𝑥𝑗𝑾𝑲𝒄; 𝒗𝑗
𝑐 = 𝑥𝑗𝑾𝑽𝒄; ∀𝑐 ∈ {1, … , ℎ}

score𝑐 𝑥𝑖 , 𝑥𝑗 =
𝒒𝑖

𝑐 ∙ 𝒌𝑗
𝑐

𝑑𝑘

𝛼𝑖𝑗 = softmax score𝑐 𝑥𝑖 , 𝑥𝑗 , ∀𝑗 ≤ 𝑖

𝐡𝐞𝐚𝐝𝑖
𝑐 =

𝑗≤𝑖

𝛼𝑖𝑗
𝑐 𝒗𝑗

𝑐

 𝒂𝒊 = (𝐡𝐞𝐚𝐝1⨁𝐡𝐞𝐚𝐝2 ⨁… ⨁𝐡𝐞𝐚𝐝ℎ)𝑾𝑶

 MultiHeadAttention 𝑥𝑗 , [𝑥1, … , 𝑥𝑁] = 𝒂𝒊

27AI-EDGE Summer REU Program Transformer Language Models

Part III: Transformer Language

Models

28AI-EDGE Summer REU Program Transformer Language Models

Transformer Language Model

Figure from: Jurafsky and Martin (2024)

29AI-EDGE Summer REU Program Transformer Language Models

Transformer Language Model

Figure from: Jurafsky and Martin (2024)

• The residual stream: each token
gets passed up and modified

Q: Why is residual stream important?

1. It prevents vanishing gradients
during training (deep networks).

2. It lets each layer refine the
representation rather than
overwrite it.

3. Residual stream is also a
memory trace of the input that's
updated step-by-step.

30AI-EDGE Summer REU Program Transformer Language Models

Transformer Language Model

Figure from: Jurafsky and Martin (2024)

• The residual stream: each token
gets passed up and modified

• We’ll need non-linearities, so
a feedforward layer:

FFN 𝑥𝑖 = ReLU 𝑥𝑖𝑾1 + 𝑏1 𝑾𝟐 + 𝑏2

• Layer norm: the vector 𝑥𝑖 is
normalized twice

31AI-EDGE Summer REU Program Transformer Language Models

Layer Norm

𝜇 =
1

𝑑

𝑖=1

𝑑

𝑥𝑖

σ =
1

𝑑

𝑖=1

𝑑

(𝑥𝑖 − 𝝁)2

ෝ𝒙 =
(𝒙 − 𝝁)

σ

 LayerNorm 𝒙 = 𝛾
(𝒙−𝝁)

σ
+ 𝛽

Layer norm is a variation of the z-score from statistics, applied to a single
vector in a hidden layer

mean of the features

standard deviation

learnable scale and shift parameters

Q: What’s the function of Layer norm?

1. Stabilizes training: it prevents
exploding or vanishing gradients.

2. Makes the optimization landscape
smoother by keeping layer inputs
at a consistent scale.

3. Allows deeper networks (like
Transformers) to train faster and
more reliably.

z-score
(standardization)

32AI-EDGE Summer REU Program Transformer Language Models

Putting Together

Figure from: Jurafsky and Martin (2024)

𝑡𝑖
1 = LayerNorm(𝑥𝑖)

𝑡𝑖
2 = MultiHeadAttention(𝑡𝑖

1, [𝑥1
1, … , 𝑥𝑁

1])

𝑡𝑖
3 = 𝑡𝑖

2 + 𝑥𝑖

𝑡𝑖
4 = LayerNorm(𝑡𝑖

3)

𝑡𝑖
5 = FFN(𝑡𝑖

4)

ℎ𝑖 = 𝑡𝑖
5 + 𝑡𝑖

3 𝑡𝑖
1

𝑡𝑖
2𝑡𝑖

3

𝑡𝑖
4

𝑡𝑖
5

33AI-EDGE Summer REU Program Transformer Language Models

Part IV: Implementing a Transformer LM

34AI-EDGE Summer REU Program Transformer Language Models

Parallelizing Computation Using 𝑿

 𝑸 = 𝑿𝑾𝑸; 𝑲 = 𝑿𝑾𝑲; 𝑽 = 𝑿𝑾𝑽;

• For attention/transformer block we’ve been computing a single output
at a single time step 𝑖 in a single residual stream.

• But we can pack the 𝑁 tokens of the input sequence into a single matrix
𝑿 of size [𝑁 × 𝑑].

• Each row of 𝑿 is the embedding of one token of the input

• 𝑿 can have 1K-32K rows, each of the dimensionality of the embedding 𝑑
(the model dimension)

35AI-EDGE Summer REU Program Transformer Language Models

𝑸𝑲𝑇

• Now can do a single matrix multiply to combine 𝑸 and 𝑲𝑇

Figure from: Jurafsky and Martin (2024)

36AI-EDGE Summer REU Program Transformer Language Models

Masking out the Future

𝑨 = softmax mask
𝑸𝑲𝑇

𝑑𝑘
𝑽;

• What is the mask function?

• 𝑸𝑲𝑇 has a score for each query dot every key, including those that
follow the query

• Add −∞ to cells in upper triangle.

• Then the softmax will turn it to 0.

Figure from: Jurafsky and Martin (2024)

37AI-EDGE Summer REU Program Transformer Language Models

Attention Again

Figure from: Jurafsky and Martin (2024)

38AI-EDGE Summer REU Program Transformer Language Models

Position Embeddings

• There are many methods, but we'll just describe the simplest: absolute
position.

• Each 𝐗𝐢 is just the sum of word and position embeddings.

Figure from: Jurafsky and Martin (2024)

39AI-EDGE Summer REU Program Transformer Language Models

धन्यवाद

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

