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Agenda

1. What are generative models? Examples?
2. How to evaluate generative models for images?

3. Variational Auto-Encoder (VAE)
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Introduction

Challenge: understand complex, unstructured inputs

Computational Speech

I Language Processing Robotics

g\latt{ga
THE OHIO STATE UNIVERSITY
COLLEGE OF ENGINEERING




Statistical Generative Models

Statistical generative models are learned from data

Data Prior Knowledge
(e.g., images of bedrooms) (e.g., physics, materials, ..)

Priors are always necessary, but there is a spectrum

Generative Traditional
I Models Methods | Prior
Data ® —@
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Statistical Generative Models

A statistical generative model is a probability distribution p(x)
e Data: samples (e.g., images of bedrooms)

* Prior knowledge: parametric form (e.g., Gaussian?), loss function,
optimization algorithm, etc.

A probability
distribution |=— scalar probability p(x)
p(x)

It is generative because sampling from p(x) generates new images
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Nata ganeration in the real weasls

ac ,

Generate
—_— N —

Generative model —

NPT Stroke paintings to realistic images
of realistic Images [Meng, He, Song, et al., ICLR 2022]

" Generate

“Ace of Pentacles” =————> \ —
Generative model 23 ————
of paintings Language-guided artwork creation
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Solving inverse problems with generative models

Generate
— N —

Generative model
of medical images

Medical image reconstruction
[Song et al., ICLR 2022]
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Outlier detection with generative models

High pe
probability
—_— N

]

Generative model
of traffic signs

Outlier detection
[Song et al., ICLR 2018]
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Category of ML Problems

W

Generative




Discriminative vs. generative

Discriminative: classify bedroom vs. dining room Generative: generate X

Y=Dining , X=

Y=Bedroom , X=

The image X is given. Goal: some decision boundary I The input X is not given. Goal:
* Requires conditional distribution over label Y: p(Y|X) generate X based on label
* E.g.:logistic regression, convolutional neural net, etc. I « Requires a model of the joint

distribution over both X and Y: p(Y, X)
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Discriminative vs. generative

Joint and conditional are related via Bayes Rule:

P(Y = Bedroom | X= Wlmeasss

Conditional

Therefore, it cannot handle missing data: P(Y = Bedroom | X =
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lmaococ anAd Toavt
TEXT PROMPT  an armchair in the shape of an avocado. ...

AL K

Edit prompt or view more imagesv

AI-GENERATED
IMAGES

P(image | caption)

TexT proMpT  a store front that has the word ‘openai’ written oniit. . ..

AI-GENERATED
IMAGES
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Text2lmage Diffusion Models

User input:

An astronaut riding a horse
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Text2Ilmage Diffusion Models

User input:

A perfect Italian meal
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Text2lmage Diffusion Models

User input:

ol IRTF AR, SEEE AR AUPE R

A teddy bear, wearing a costume, is standing in front of
the Hall of Supreme Harmony and singing Beijing opera
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Dalle3

A minimap diorama of a cafe adorned with indoor plants. Wooden
beams crisscross above, and a cold brew station stands out with tiny
bottles and glasses
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Progress in Inverse Problems

P(high resolution | low resolution) P(full image| mask)

‘ Y

Menon et al, 2020 Liu al, 2018

P(color image| greyscale)
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Progress in Inverse Problems

User input:
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Progress in Inverse Problems

Stroke Painting to Image Stroke-based Editing "

Input ] Output
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Progress in Inverse Problems

ted Image

v

Input Image Edited Image

Input Image Edited Image Input Image Edi

P

— - -

— =

“A chen’s drawing of a waterfall”

s SIS GG 777 r- i BN s
= 5T & 2 kg
o - v 4 : . 7

“A photo of an open box” | “A photo f a sit dog”

Kawar et al., 2023
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Language Generation

Completion

To get an A+ in deep generative models, students have to be willing to work

with problems that are a whole lot more interesting than, say, the ones that

most students work on in class. If you're a great student, the question above

To get an A+ in deep generative models, students have to can be avoided and you'll be able to do great work, but if you're not, you will
need to go beyond the basics before getting good.

Custom prompt

Now to be clear, this advice is not just for the deep-learning crowd; it is good
advice for any student who is taking his or her first course in machine
learning.

The key point is that if you have a deep, deep brain of a computer scientist,

P(neXt word | pFEViOUS WOFdS) that's just as important to you.

Radford et al., 2019
THE OHIO STATE UNIVERSITY Demo from talktotransformer.com
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Machine Translation

Conditional generative model P( English text| Chinese text)

Encoder € |m™| 6 |/ €2 |™/™>| e3 |™| 64 |™>| es5 [/ ©s

Decoder do e d; _ dz —_— da

25

Figure from Google Al research blog.
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pdrse_expenses.py

import datetime

def parse_expenses(expenses_string):
"""Parse the list of expenses and return the list of triples (date, va

OpenAl Codex




Video Generation

Suddenly, the walls of the embankment
broke and there was a huge flood

THE OHIO STATE UNIVERSITY
COLLEGE OF ENGINEERING



Video Generation

a couple sledding down a snowy hill on a tire
roman chariot style
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Imitation Learning

Conditional generative model P(actions | past observations)

29
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Molecule generation




From Discrimitive to Generative Modeling

e Discrimitive ML: Classification & Regression
* What are the components for ML discrimitive models?

1. Representation: Need a discrimitive function from x ->y
e E.g.: SVM/XGBoost? RNN/CNN? Transformer?

2. Learning: Need a loss function and a training algorithm

* Loss: Cross-ent, Euclidean distance...
e Algorithm: GD, SGD, mini-batches...
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Key Challenges

1. Representation: How do we model the marginal/joint distribution of
many random variables?

2. Learning: What is the right way to compare probability distributions?

6eEM

xi~Pdata

i=12..,n Model family

32

* Other challenges: How to obtain a sample? How to evaluate the performance?
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Agenda

1. What are generative models? Examples?
2. How to evaluate generative models for images?

3. Variational Auto-Encoder (VAE)
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Typical strategy for discriminative models

* Includes classification and regression
1. Obtain a test dataset with data x4, ..., xy and labels y4, ..., vy

2. Evaluate the model for the estimated labels y; = f5(x;)
3. Compare yq, ..., Yy and ¥4, ..., ¥y with respect to some distance
metric

* Binary/Categorical -> cross-entropy; Real-valued -> Avg Euclidean distance,
etc.
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Difficulty for generative models

1. We can still obtain a test dataset with data x4, ..., xy, but no labels
2. We can generate X4, ..., Xy, but no matching guarantee that x; = X;

e Attempt 1: Use human judgement

 Humans are costly
* No uniform criteria...

* Attempt 2: Evaluate Ey..,, _ [logpg(X)]
e Hard to compute in real-world...
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Evaluations for Images

* Candidate 1: Inception Scores

* Assumptions

1. The generative model is trained on some labelled dataset
2. We have a well-trained classifier c(y|x)

* Inception Score = Sharpness (S) * Diversity (D)

e ...the higher the better
IS=Sx*D

THE OHIO STATE UNIVERSITY
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Inception Score Example

57175597

Low sharpness High sharpness

5= exp (EXN,, [ [ ctyixytog c<y|x)dy])

/VV 1 /741 /71O )V2a32456789

Low diversity High diversity

D = exp (~Excp | [ clyl)logc(r)iy| )

38
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Evaluations for Images (cont.)

e Candidate 2: Fréchet Inception Distance (FID)
* ...the lower the better

1. Step 1: Let G denote the generated samples, and let 7" denote the
test dataset

2. Step 2: Compute the feature vectors F¢ and Fy (usually the last
pooling layer of Inception v3, which is 2048-dim)

3. Step 3: Fit a multivariate Gaussian for each as (,ug, Zg) and (us, 27)

4. Step 4: The FID is equal to Wasserstein-2 distance between them
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Evaluations for Images (cont.)

e Candidate 3: (specifically for image recovery)

1. MSE (and RMSE): pixel-level matchness
2. PSNR: MSE weighted by the maximal pixel value
3. SSIM: product of luminance, contrast, and structure (or correlation)

* General procedure

1. original image O -> noisy image N-> recovered image R
2. Compare O and R with the metrics above

THE OHIO STATE UNIVERSITY
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Original image Noisy Image Recovered Image

> 1

ecovery |

(b)

Recovered Image

(d) | ®

Recovered Image

42

(9) (i)
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https://doi.org/10.4236/jcc.2019.73002

Agenda

1. What are generative models? Examples?
2. How to evaluate generative models for images?

3. Variational Auto-Encoder (VAE)
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VAE: Distribution Representation

e Simply use feed-forward neural network (FFNN)

* Auto-Encoder Structure: Encoder network hy + Decoder network fg

\ /

xXPl hg(x) 1z fe2 Plx

Say, an image
of 28x28=784

dimensions
% Iatent \

(compressed) data,
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VAE Sampling

1. Generate a random variable z ~ N (u, %)

2. One forward-pass of the decoder network x' = f5(z)

3. (Optional): Re-sample again using x’ (say, from a localized Gaussian)

/

Initial 1z fg(2)
random

variable \
THE OHIO Linir wivivimoss s
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Generated
parameters
(or data)
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VAE Sampling

]RD

p(x)
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https://mbernste.github.io/posts/vae/

VAE: How to learn?

Decoder  Latent Dist (also

* By law of total probability: (Gaussian) Gaussian)

pe(x) = [ po(x,2) dz = [ pg(x|2) pg(2) dz

* This is Gaussian mixture, which is very complex
Cluster 2

Cluster 1
Cluster 3

THE OHIO STATE UNIVERSITY
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VAE: How to learn? (cont.)

* Suppose we are given N data (images): x4, ..., Xy

e Goal: maximize (log-)likelihood:

logpg(xq,...,xN) = Z logpg(x;)
l

THE OHIO STATE UNIVERSITY
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VAE: How to learn? (cont.)

e Let’s do some math...

lﬂg'pg(:r) — lﬂg (f pg(:r, z)dz) (See previous slide)
. pe(z, 2) (Multiply and divide
pg = Decoder/Generator = log (f 4s(2|z) Q¢(3|$)d3) the same quantity)
qe = Encoder
> flﬂg bo ((:E’I z)) 9s(z|z)dz (Jensen’s inequality)
o\ <|T
ELBO
* The last line is the Evidence Lower BOund (ELBO) o

THE OHIO STATE UNIVERSITY
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ELBO visualized

ELBO(6)

9*

THE OHIO STATE UNIVERSITY
EEEEEEEEEEEEEEEEEEE G




Optimization Algorithm for ELBO

e Step 1: Obtain N datapoints (possibly from a random minibatch)
e Step 2: Compute the ELBO
ELBO = | (lngg(X, z) — log q¢(zlx)) qp(z|x) d z
* Step 3: Calculate the gradient w.r.t. 6 and ¢
e Step 4: Gradient Update

* |terate Steps 2-4 until convergence...
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Optimizating VAE ELBO (cont.)

ELBO = | (logpg(x, z) — log q¢(Z|x)) qe(z|x) d z
* It’s easy to take derivative w.r.t. 0:

d d
EELBO = [ (Elogpg(x, Z)) qe (z|x) d z

* It's very hard to take derivative w.r.t. ¢! There is an integral!
* How to solve for this? Reparameterization trick
* Now, we can proceed in the previous algorithm...

THE OHIO STATE UNIVERSITY
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Reparameterization Trick

Original form Reparameterized form
f Backprop 1 \\f :
~ ag(2]x) Vyz = g(gx.e)
& & Vof <9 <X ~ p(e)

\ / : Deterministic node — : Evaluation of

. - Random node =g : Differentiation of f

54
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https://arxiv.org/pdf/1906.02691

Applying VAE on MINIST
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Reconstruction Example

Original Reconstructed

56
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https://mbernste.github.io/posts/vae/

Exploring the Latent Space...
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https://mbernste.github.io/posts/vae/

Exploring the Latent Space... (cont.)

58
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https://mbernste.github.io/posts/vae/

Simulation

* Check out
https://colab.research.google.com/drive/1tz_ aNMLJiDgOtfK7MdGgy!

apDwf5FC-T?usp=sharing
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Homework

For 2 of 3 models below, change at least 3 parameters of the model in
class; examine any differerence (quantitatively or qualitatively)

1. VAE
2. DCGAN
3. Diffusion Model

e Send your report to chen.11020@ buckeyemail.osu.edu
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Questions?
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