Generative Models for Images

Yuchen Liang

REU Summer 2025

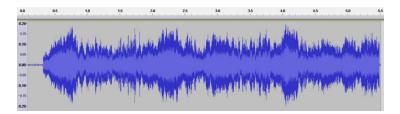
Agenda

- 1. What are generative models? Examples?
- 2. How to evaluate generative models for images?
- 3. Variational Auto-Encoder (VAE)

Introduction

Challenge: understand complex, unstructured inputs

Computer Vision

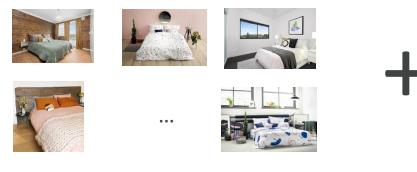


Computational Speech

Robotics

Statistical Generative Models

Statistical generative models are learned from data



Data (e.g., images of bedrooms)

Prior Knowledge (e.g., physics, materials, ..)

4

Priors are always necessary, but there is a spectrum

Statistical Generative Models

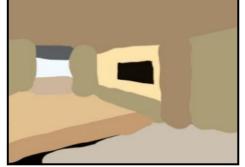
A statistical generative model is a **probability distribution** p(x)

- Data: samples (e.g., images of bedrooms)
- **Prior knowledge:** parametric form (e.g., Gaussian?), loss function, optimization algorithm, etc.

Image xA probability
distribution
$$p(x)$$
 \rightarrow scalar probability $p(x)$

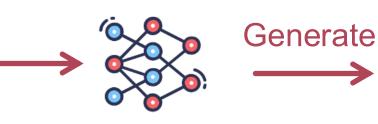
It is generative because sampling from p(x) generates new images

Data generation in the real world



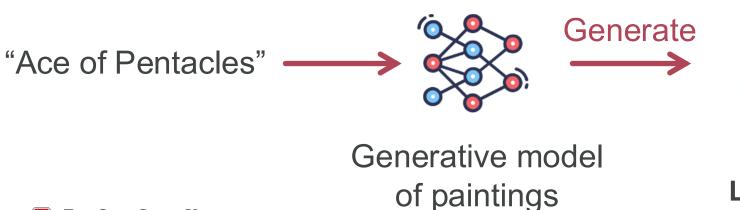
THE OHIO STATE UNIVERSITY

LLEGE OF ENGINEERING



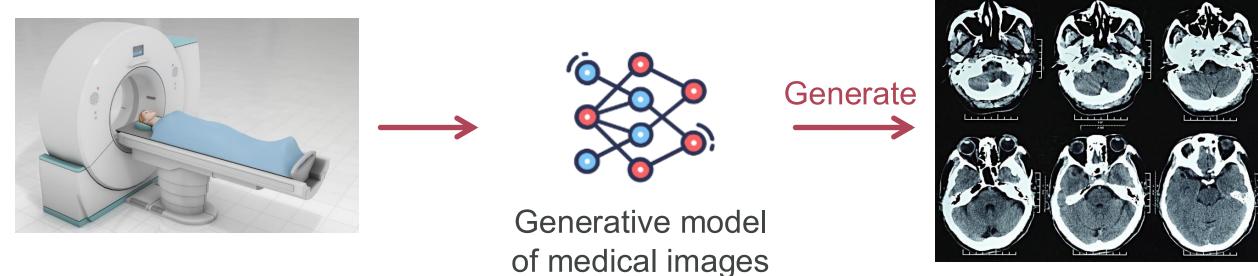
Generative model of realistic images

Stroke paintings to realistic images [Meng, He, Song, et al., ICLR 2022]



Language-guided artwork creation https://chainbreakers.kath.io @RiversHaveWings

Solving inverse problems with generative models



Medical image reconstruction

[Song et al., ICLR 2022]

Outlier detection with generative models

High

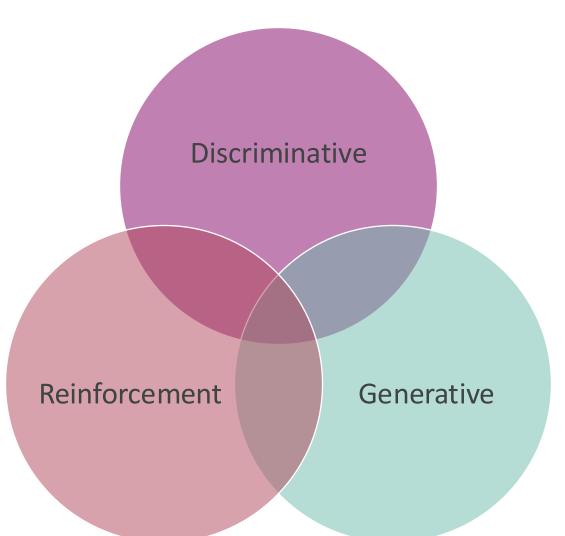
probability

Generative model of traffic signs

Outlier detection

[Song et al., ICLR 2018]

Category of ML Problems



COLLEGE OF ENGINEERING

Discriminative vs. generative

Discriminative: classify bedroom vs. dining room

- Requires conditional distribution over label Y: p(Y | X)
- E.g.: logistic regression, convolutional neural net, etc.

Generative: generate X

Y=Bedroom, X=

The input X is **not** given. **Goal**: generate X based on label

Requires a model of the joint
 distribution over both X and Y: p(Y, X)

Discriminative vs. generative

Joint and conditional are related via **Bayes Rule**:

Joint P(Y = Bedroom, X= P(Y = Bedroom | X= = P(X = **Conditional** Marginal **Discriminative**: no need to model: P(X= Therefore, it cannot handle missing data: P(Y = Bedroom | X =)???

Images and Text

TEXT PROMPT an armchair in the shape of an avocado....

AI-GENERATED IMAGES

Edit prompt or view more images↓

P(image | caption)

TEXT PROMPT a store front that has the word 'openai' written on it....

AI-GENERATED IMAGES

Text2Image Diffusion Models

User input:

An astronaut riding a horse

Text2Image Diffusion Models

User input:

A perfect Italian meal

Text2Image Diffusion Models

User input:

泰迪熊穿着戏服,站在太和殿前唱京剧

A teddy bear, wearing a costume, is standing in front of the Hall of Supreme Harmony and singing Beijing opera

Dalle3

A minimap diorama of a cafe adorned with indoor plants. Wooden beams crisscross above, and a cold brew station stands out with tiny bottles and glasses

P(high resolution | low resolution)

Menon et al, 2020

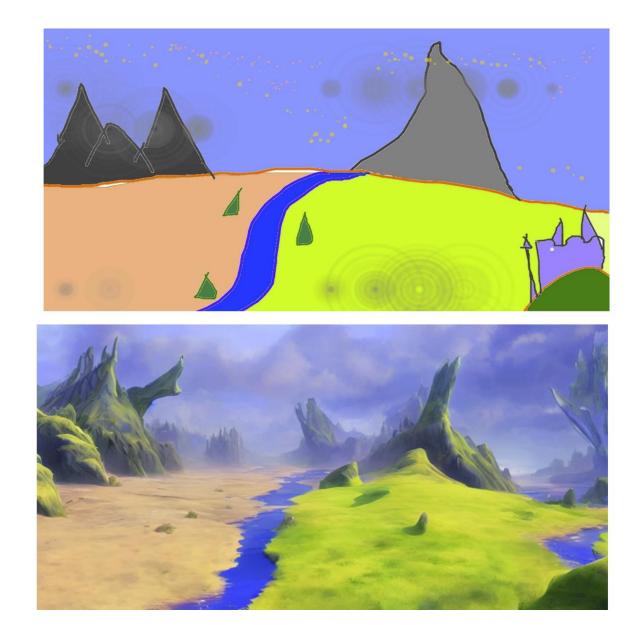
P(full image | mask)

Liu al, 2018

P(color image | greyscale)

OLLEGE OF ENGINEERING

Antic, 2020



User input:

The Ohio State University

OLLEGE OF ENGINEERING

 Stroke Painting to Image
 Stroke-based Editing

 Image: Stroke Painting to Image
 Image: Stroke Painting to Image

 Image: Stroke Painting to Image
 Image: Stroke Painting to Image

 Image: Stroke Painting to Image
 Image: Stroke Painting to Image

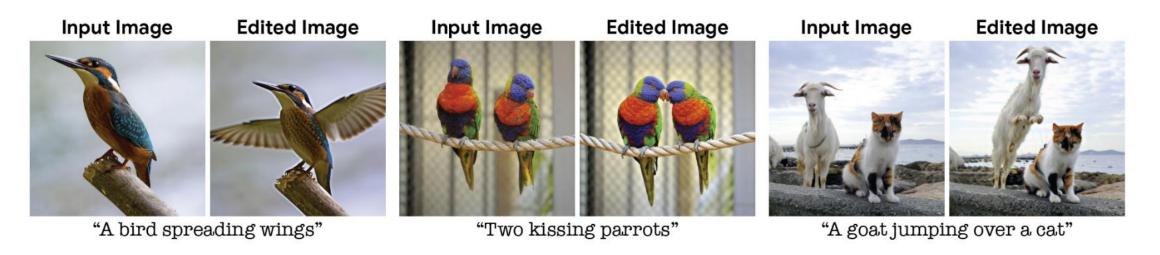
 Image: Stroke Painting to Image
 Image: Stroke Painting to Image

 Image: Stroke Painting to Image
 Image: Stroke Painting to Image

 Image: Stroke Painting to Image
 Image: Stroke Painting to Image

 Image: Stroke Painting to Image

Input



"A children's drawing of a waterfall"

"A photo of a sitting dog"

"A photo of an open box"

Kawar et al., 2023

Language Generation

Completion

Custom prompt

To get an A+ in deep generative models, students have to

P(next word | previous words)

To get an A+ in deep generative models, students have to be willing to work with problems that are a whole lot more interesting than, say, the ones that most students work on in class. If you're a great student, the question above can be avoided and you'll be able to do great work, but if you're not, you will need to go beyond the basics before getting good.

Now to be clear, this advice is not just for the deep-learning crowd; it is good advice for any student who is taking his or her first course in machine learning.

The key point is that if you have a deep, deep brain of a computer scientist, that's just as important to you.

Radford et al., 2019 Demo from talktotransformer.com

Machine Translation

Conditional generative model P(English text | Chinese text)

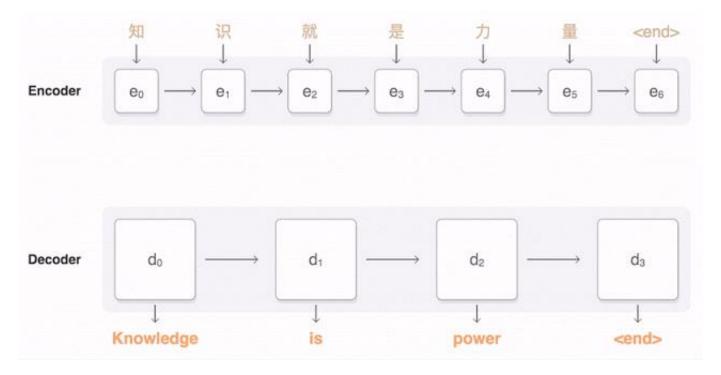


Figure from Google AI research blog.

Code Generation

parse_expenses.py	⊶∞ write_sql.go <mark>тз</mark> sentiment.t	s 🛃 addresses.rb	
1 import dateti	ne		
2			
3 def parse_exp	enses(expenses_string):		
4 """Parse	the list of expenses and re	turn the list of triples (date	e, va
5			
6			
7			
8			
9			
10			
12 13			
14			
15			
16			
17			
18			
19			
20			

COLLEGE OF ENGINEERING

OpenAl Codex

Video Generation

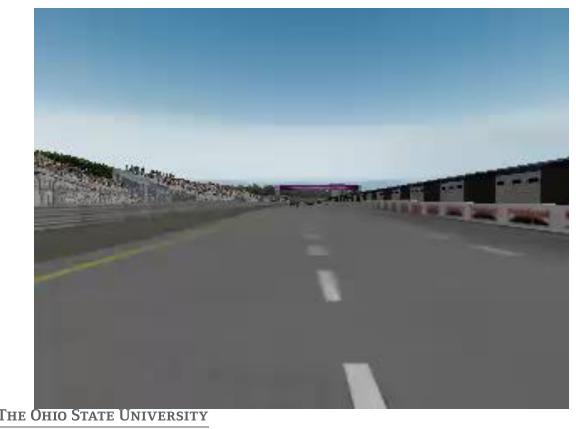
Suddenly, the walls of the embankment broke and there was a huge flood

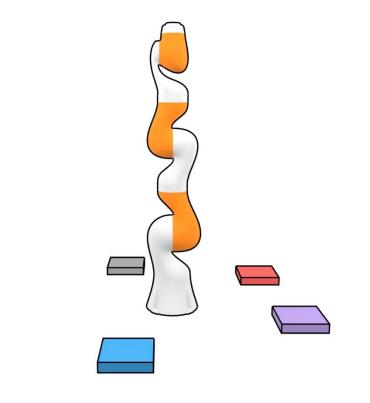
Video Generation

a couple sledding down a snowy hill on a tire roman chariot style

Imitation Learning

Conditional generative model P(actions | past observations)



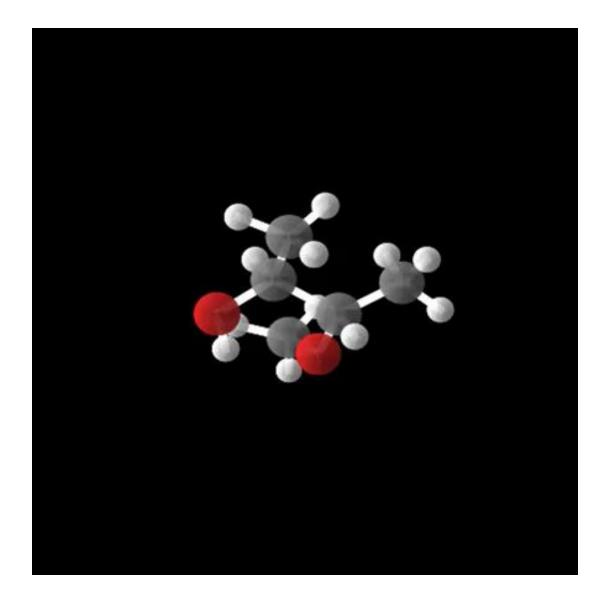


Janner et al., 2022

COLLEGE OF ENGINEERING

Li et al., 2017

Molecule generation



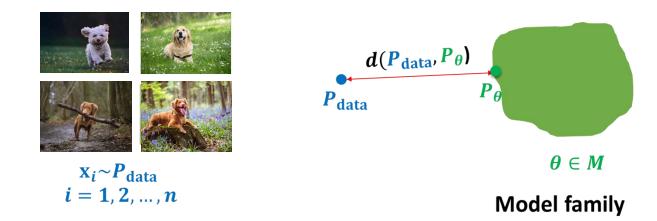
COLLEGE OF ENGINEERING

From Discrimitive to Generative Modeling

- Discrimitive ML: Classification & Regression
- What are the components for ML discrimitive models?
- **1. Representation**: Need a discrimitive function from x -> y
 - E.g.: SVM/XGBoost? RNN/CNN? Transformer?
- 2. Learning: Need a loss function and a training algorithm
 - Loss: Cross-ent, Euclidean distance...
 - Algorithm: GD, SGD, mini-batches...

Key Challenges

- **1. Representation**: How do we model the **marginal/joint distribution** of many random variables?
- 2. Learning: What is the right way to compare probability distributions?



• **Other challenges:** How to obtain a sample? How to evaluate the performance?

Agenda

- 1. What are generative models? Examples?
- 2. How to evaluate generative models for images?
- 3. Variational Auto-Encoder (VAE)

Typical strategy for discriminative models

- Includes classification and regression
- 1. Obtain a test dataset with data x_1, \ldots, x_N and labels y_1, \ldots, y_N
- 2. Evaluate the model for the estimated labels $\hat{y}_i = f_{\theta}(x_i)$
- 3. Compare y_1, \ldots, y_N and $\hat{y}_1, \ldots, \hat{y}_N$ with respect to some distance metric
 - Binary/Categorical -> cross-entropy; Real-valued -> Avg Euclidean distance, etc.

Difficulty for generative models

- 1. We can still obtain a test dataset with data x_1, \ldots, x_N , but **no labels**
- 2. We can generate $\tilde{x}_1, ..., \tilde{x}_N$, but **no matching guarantee** that $x_i \approx \tilde{x}_i$
- Attempt 1: Use human judgement
 - Humans are costly
 - No uniform criteria...
- Attempt 2: Evaluate $\mathbb{E}_{X \sim p_{test}}[\log p_{\theta}(X)]$
 - Hard to compute in real-world...

Evaluations for Images

- Candidate 1: Inception Scores
- Assumptions
 - 1. The generative model is trained on some **labelled** dataset
 - 2. We have a well-trained **classifier** c(y|x)
- Inception Score = Sharpness (S) * Diversity (D)
 - ...the higher the better

$$IS = S * D$$

Inception Score Example

$$57175597$$

$$Figh sharpness$$

$$S = \exp\left(E_{x \sim p}\left[\int c(y|x) \log c(y|x) dy\right]\right)$$

$$111171$$

$$C123456789$$

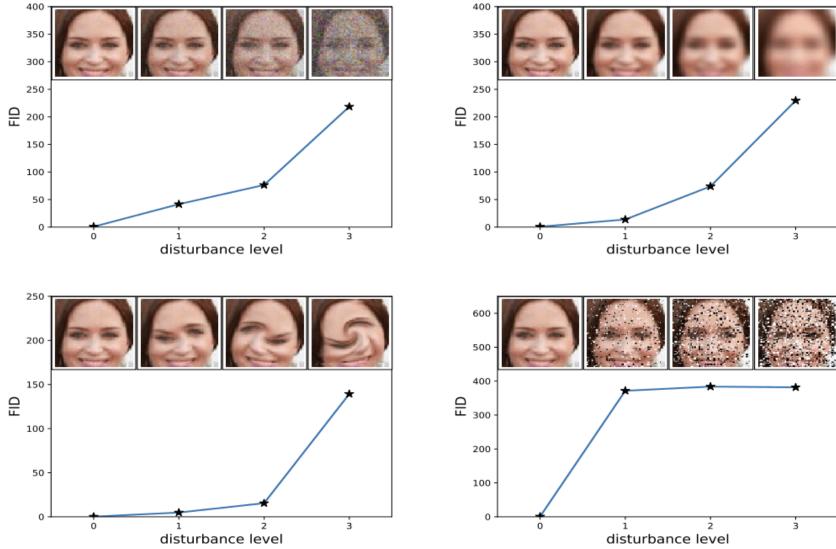
$$High diversity$$

$$D = \exp\left(-E_{x \sim p}\left[\int c(y|x) \log c(y) dy\right]\right)$$

38

Evaluations for Images (cont.)

- Candidate 2: Fréchet Inception Distance (FID)
 - ...the lower the better
- 1. Step 1: Let G denote the generated samples, and let T denote the test dataset
- 2. Step 2: Compute the feature vectors $F_{\mathcal{G}}$ and $F_{\mathcal{T}}$ (usually the last pooling layer of Inception v3, which is 2048-dim)
- 3. Step 3: Fit a multivariate Gaussian for each as (μ_G, Σ_G) and (μ_T, Σ_T)
- 4. Step 4: The FID is equal to **Wasserstein-2** distance between them



COLLEGE OF ENGINEERING

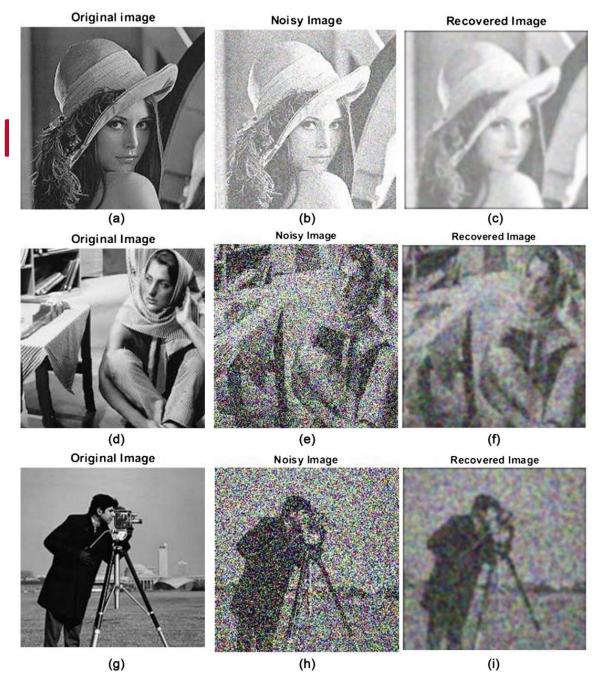
https://machinelearningmastery.com/how-to-implement-the-frechet-inception-distance-fid-from-scratch/

40

Evaluations for Images (cont.)

- Candidate 3: (specifically for **image recovery**)
 - 1. MSE (and RMSE): pixel-level matchness
 - 2. PSNR: MSE weighted by the maximal pixel value
 - 3. SSIM: product of luminance, contrast, and structure (or correlation)
- General procedure
 - 1. original image *O* -> noisy image *N*-> recovered image *R*
 - 2. Compare *O* and *R* with the metrics above

Recovery I



College of Engineering

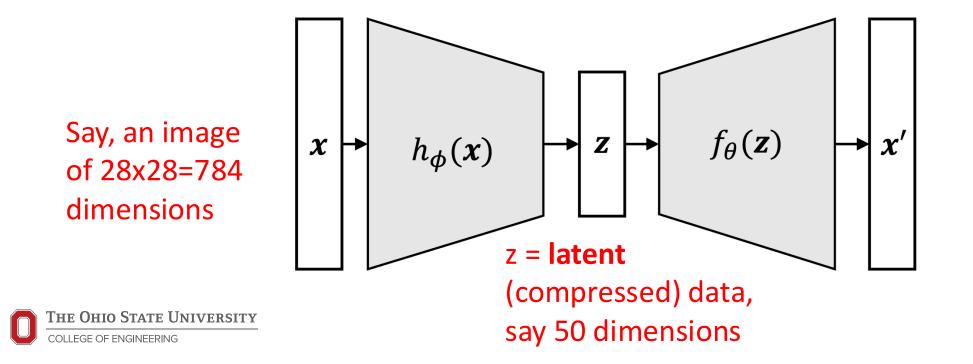
10.4236/jcc.2019.73002

Agenda

- 1. What are generative models? Examples?
- 2. How to evaluate generative models for images?
- 3. Variational Auto-Encoder (VAE)

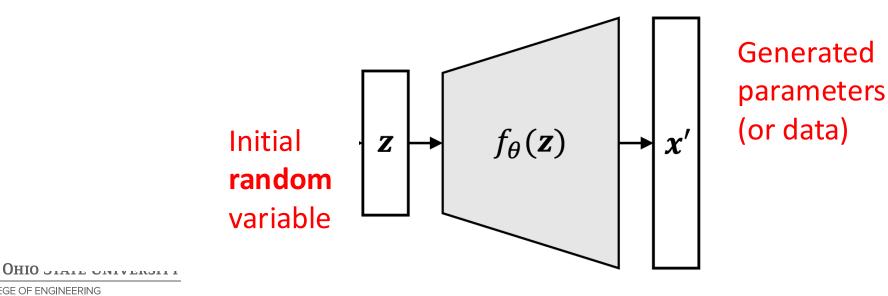
VAE: Distribution Representation

- Simply use feed-forward neural network (FFNN)
- Auto-Encoder Structure: **Encoder** network h_{ϕ} + **Decoder** network f_{θ}

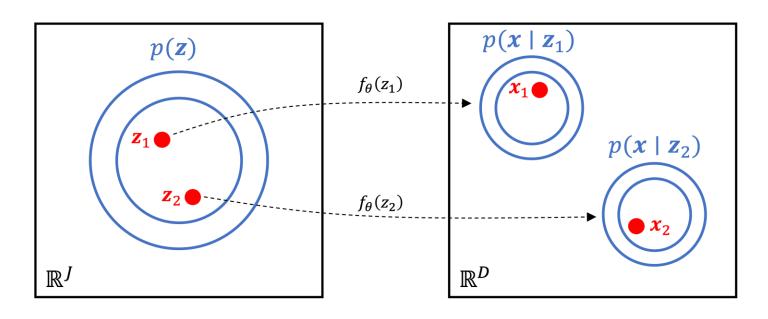


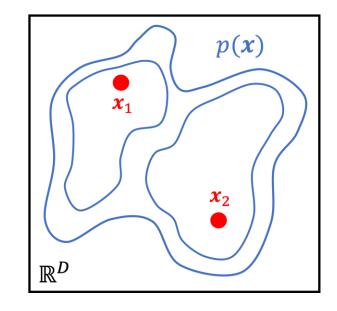
VAE Sampling

- 1. Generate a **random** variable $z \sim \mathcal{N}(\mu, \Sigma)$
- 2. One forward-pass of the **decoder** network $x' = f_{\theta}(z)$
- 3. (Optional): Re-sample again using x' (say, from a localized Gaussian)



VAE Sampling

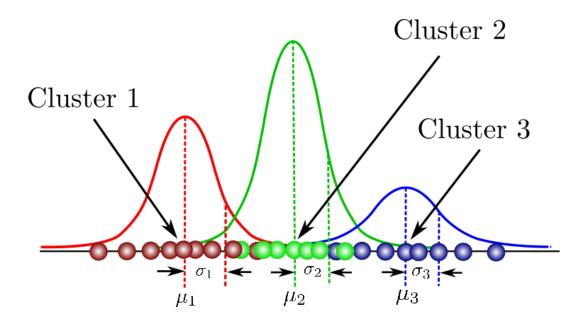




https://mbernste.github.io/posts/vae/

VAE: How to learn?

- By law of total probability: $p_{\theta}(x) = \int p_{\theta}(x, z) \, dz = \int p_{\theta}(x|z) \, p_{\theta}(z) \, dz$ Decoder Latent Dist (also (Gaussian))
 - This is Gaussian mixture, which is very complex



VAE: How to learn? (cont.)

- Suppose we are given N data (images): x_1, \ldots, x_N
- Goal: maximize (log-)likelihood:

$$\log p_{\theta}(x_1, \dots, x_N) = \sum_{i} \log p_{\theta}(x_i)$$

VAE: How to learn? (cont.)

• Let's do some math...

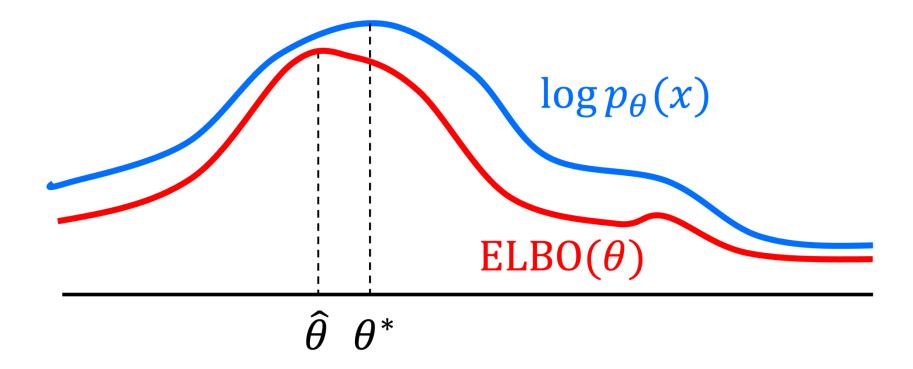
$$\log p_{\theta}(x) = \log \left(\int p_{\theta}(x, z) dz \right)$$
 (See previous slide)

$$p_{\theta} = \text{Decoder/Generator} \qquad = \log \left(\int \frac{p_{\theta}(x, z)}{q_{\phi}(z|x)} q_{\phi}(z|x) dz \right)$$
 (Multiply and divide the same quantity)

$$q_{\phi} = \text{Encoder} \qquad \geq \underbrace{\int \log \frac{p_{\theta}(x, z)}{q_{\phi}(z|x)} q_{\phi}(z|x) dz}_{\text{ELBO}}$$
 (Jensen's inequality)

• The last line is the Evidence Lower BOund (ELBO)

ELBO visualized



Optimization Algorithm for ELBO

- Step 1: Obtain N datapoints (possibly from a random minibatch)
- Step 2: Compute the ELBO $ELBO = \int \left(\log p_{\theta}(x, z) - \log q_{\phi}(z|x) \right) q_{\phi}(z|x) dz$
- Step 3: Calculate the gradient w.r.t. heta and ϕ
- Step 4: Gradient Update
- Iterate Steps 2-4 until convergence...

Optimizating VAE ELBO (cont.)

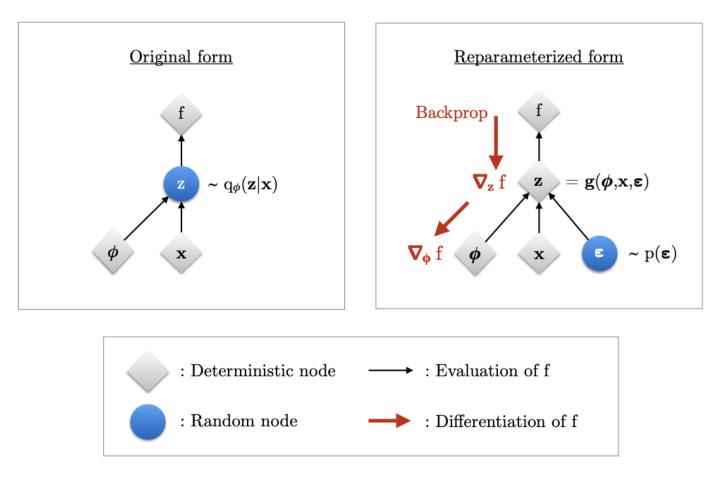
 $ELBO = \int \left(\log p_{\theta}(x, z) - \log q_{\phi}(z|x) \right) q_{\phi}(z|x) dz$

• It's easy to take derivative w.r.t. θ :

$$\frac{d}{d\theta}ELBO = \int \left(\frac{d}{d\theta}\log p_{\theta}(x,z)\right) q_{\phi}(z|x) dz$$

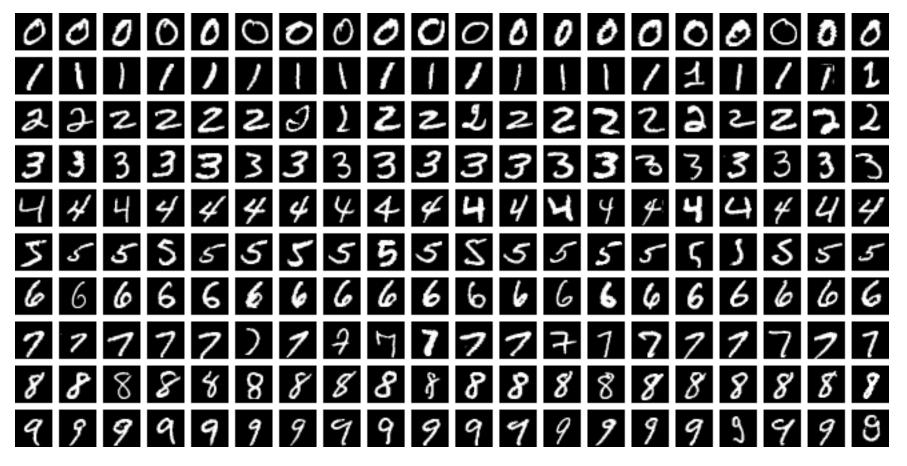
- It's very hard to take derivative w.r.t. ϕ ! There is an integral!
- How to solve for this? Reparameterization trick
- Now, we can proceed in the previous algorithm...

Reparameterization Trick

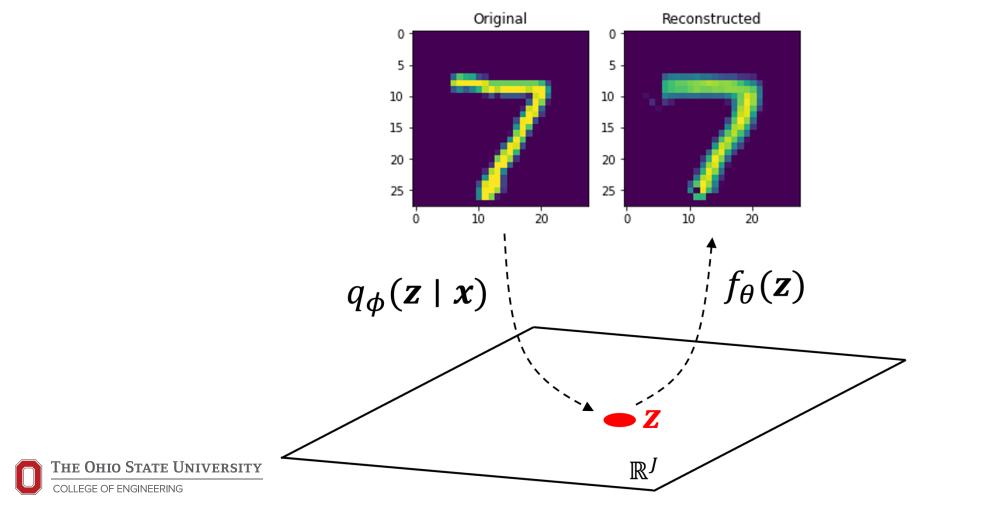


54

Applying VAE on MNIST



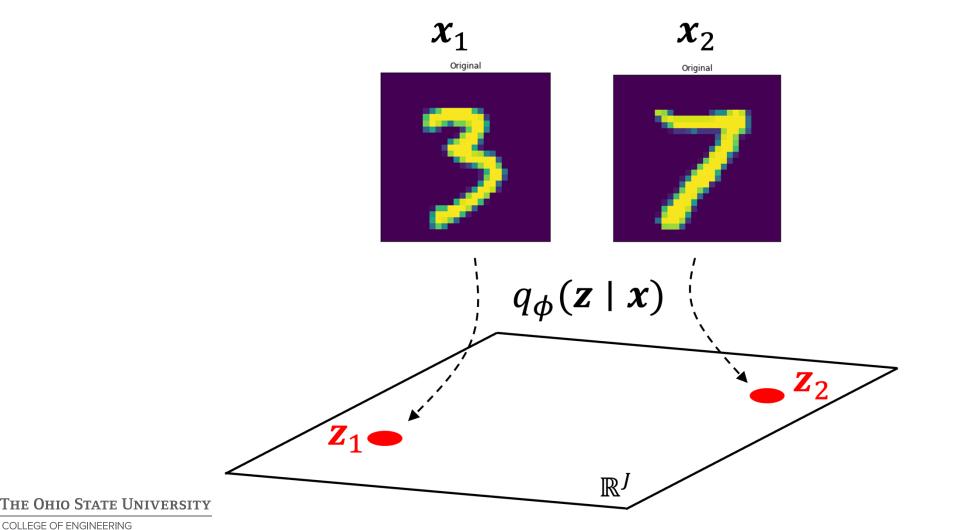
Reconstruction Example



56

https://mbernste.github.io/posts/vae/

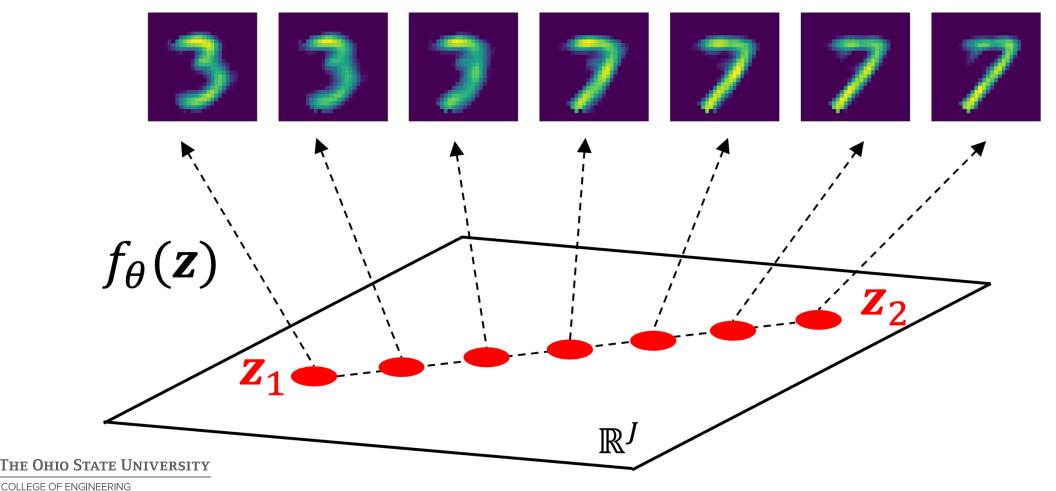
Exploring the Latent Space...



57

https://mbernste.github.io/posts/vae/

Exploring the Latent Space... (cont.)



58

Simulation

• Check out

<u>https://colab.research.google.com/drive/1tz_aNMLJjDqOtfK7MdGgyl</u> <u>apDwf5FC-T?usp=sharing</u>

Homework

For 2 of 3 models below, change at least 3 parameters of the model in class; examine any difference (quantitatively or qualitatively)

- 1. <u>VAE</u>
- 2. DCGAN
- 3. Diffusion Model
- Send your report to chen.11020@buckeyemail.osu.edu

Questions?

References

- S. Ermon, Stanford CS 236 Course, URL: <u>deepgenerativemodels.github.io</u>
- D. P. Kingma and M. Welling, An Introduction to Variational Autoencoder, https://arxiv.org/pdf/1906.02691
- M. N. Bernstein, Variational autoencoders, URL: <u>https://mbernste.github.io/posts/vae/</u>

