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Main Tasks for Generative Models

e Key: Sample generation

Smooth PDF
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Histogram

* Density estimation
e Representation learning
* Etc.

E.g., Kernel Density Estimator (KDE) can
estimate density, but cannot sample...
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Key Challenges

1. Representation: How do we model the marginal/joint distribution of
many random variables?

2. Learning: What is the right way to compare probability distributions?

6eEM

xi~Pdata

i=12..,n Model family

* Other challenges: How to obtain a sample? How to evaluate the performance?
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Recap on VAE

* Distribution Representation: feed-forward neural network (FFNN)

* Structure: Encoder network hy + Decoder network fj
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Recap on VAE Training

e Goal: maximize (log-)likelihood:

logpg(xq,...,x5) = Z logpg(x;)
l

* Practical algorithm: maximize the ELBO
logpg(x) = ELBO = | (lngg(X, z) — log q¢(zlx)) q4(z|x) d z

e Disadvantages of ELBO:
1. Inconsistent estimator (introducing asymptotic bias)
2. Samples tend to have lower quality...
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Rethinking the objective...

e Goal: maximize (log-)likelihood:

max By, [108 pe (X))

* Fact: Optimal generative model gives the best sample quality and
highest likelihood

e Caveat: For imperfect models, higher likelihood # better sample!

 Example: memorizing training data -> great samples, zero likelihood
on test dataset
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Refer to Theis et al., 2016



Agenda

1. Generative Adversarial Networks (GANs)

2. Diffusion models
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Trichotomy of Existing Generative Models
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Trichotomy of Existing Generative Models
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The GAN Zoo...

Cumulative number of named GAN papers by month

Total number of papers
N
o
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https://github.com/hindupuravinash/the-gan-zoo



Sample Video from StyleGAN3
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Intuition of GAN: Adversarial




GAN: Basic Structure

* GAN is the only likelihood-free generative model!

* Discriminator: Given an input image x, output the prob that it is real
* If xisreal, D(x) =~ 1.
* If x is artificial, D(x) =~ 0.

- Generator: Generate some x = G(z) such that D(G(2)) =~ 1.
e 7 is the initial latent noise (e.g., unit Gaussian)
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GAN: Basic Structure

Generative Adversarial Network (GAN)

Input Noise (z)

Latent Space

ai: SoluLab
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GAN: Training Objective

e Loss for Discriminator: For fixed G,

Max{ Ex-pgqce [l0g D(X)] + E, [log (1 - D(6(2) )|}

Higher D values for real data Lower D values for fake data

* Loss for Generator: For fixed D,

mm{ [log (1-0(6@))|}
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Can we solve GAN’s optimization problem?

* Optimization problem:
minmaxV(G,D) = E,.,_ . [logD(x)]| + IEyNPG[log(l — D(y))]

G D

* For fixed G, take derivative w.r.t. D:

/PG{HT)

1— D(x)

0 1
0=35V(G.D) = [ puan(e) e +
= 0= pdam(:r)ﬁ —2a(2) ;[m)
— D*[I) - pdata{:r}

- pdata(fﬂ) -+ pG(I)
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(Rule of derivative of log)

(b/c everything is non-
negative)

(Rearrange the terms)



Can we solve GAN’s optimization problem? (cont.)

* The optimal training loss for fixed G:

¥\ Pdata ()
V(G,D") = f Paa(a) log P82 T

pa(z)
" / pale)log )

= JSD(paaa(), pe(z))

 JSD stands for Jensen-Shannon Divergence, measuring diff of dist’s

* Optimal Generator: p; = Pgqta, aNd V* = —log4
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Extension 1: Conditional GAN (CGAN)
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https://arxiv.org/pdf/1411.1784



https://arxiv.org/pdf/1411.1784

Extension 2: Deep Convolutional GAN (DCGAN)

- w

G(2)

Figure 1: DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribu-
tion Z is projected to a small spatial extent convolutional representation with many feature maps.
A series of four fractionally-strided convolutions (in some recent papers, these are wrongly called
deconvolutions) then convert this high level representation into a 64 x 64 pixel image. Notably, no o

fully connected or pooling layers are used.
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Radford et al., Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, arXiv:1511.06434



DCGAN Simulation

https://colab.research.google.com/drive/1pChdKaxLOZhMJA jxpD0k2
WqgE1C9yCf ?usp=sharing
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Some Issues with GAN

1. Vanishing gradient
2. Unstable optimization, even non-convergence

3. Mode collapse

* Thus, many (many) tricks: https://github.com/soumith/ganhacks

* |nitialize with Gaussian rather than Uniform

* Avoid ReLU and MaxPool as they have sparse gradients
e Add noise to inputs and let them decay

* Don’t balance loss via statistics

THE OHIOSTATE UNIVERSITY
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https://github.com/soumith/ganhacks

Vanishing Gradient and Wasserstein GAN
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Non-convergence

* GAN objective: min max V (x, y)
Xy

 Consider V(x,y) = xy

* Equilibrium (saddle point)atx =y =20
e Using gradient descent results in a spiral
% B oV (xt, Ve) % B vV (xt, ye)
ot ox, ot  dy,
Xy = X9 COSt — ypsSint
Ve = XgSINt + ygcost
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Mode collapse
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Agenda

1. Generative Adversarial Networks (GANSs)

2. Diffusion models
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Trichotomy of Existing Generative Models

THE OHIO STATE UNIVERSITY

COLLEGE OF ENGINEERING

Generative
Adversarial

Networks

Quality

Samples

' Denoisine
1 LY \ [
: v Dittusion

¢ Models

Mode

Coverage /
Diversity

26

Xiao, 2022



High-Fidelity Generation for 1024x1024 Images
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Diffusion Models: Motivation

what are the typical steps of drawing a picture for a human?

The typical steps a human follows when drawing a picture usually follow a loose structure that blends

planning, sketching, refining, and finishing. I\Nhile the exact process varies depending on the artist's style

and medium, here's a general breakdown:

THE OHIO STATE UNIVERSITY
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Diffusion Models: Motivation (cont.)

* Takeaway: There is (roughly) a unified structure for creation

* Previously, VAE and GAN generate samples in “one-shot” (one pass of
Feed-forward NN)

* Question: Can we divide the generation process into small,
manageable steps?

e Diffusion Models!

THE OHIO STATE UNIVERSITY
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Diffusion Process = Noising
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)

Noising (cont

Process =

10N

Diffus
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From Denoisng to Image Generation

Question: How to use a magic denoiser to create new images?

. Create some noise
. Apply your magic denoiser
. If still noisy, repeat step 2 again...

B~ W NN BB

. Donel
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Diffusion Model: Structure Overview

pG(Xt 1|xt
@ .—> —>

\—--”

Flgure 2: The directed graphical model considered in this work.
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Diffusion Model: Forward Process

* Forward Process (for noising)
xO—)xl—)...—)xT

Original clean Image Veeery noisy version...

* Divided into multiple steps (T could be 50-1000)
* During each step, a small amount of (Gaussian) noise is added:

xt=\/1_ﬁtxt_1+\/EEt, EtNN(O,I)

“noise schedule” Gaussian noise

* Check your understanding: Does larger [ imply faster/slowlier noising? _

THE OHIO STATE UNIVERSITY
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What is the distribution of x?

rr = /1 — Prer—1 + \/ Brer
= \/orTr_1 + Vv 1— e

Thus, we can immediately sample x; from x...
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Diffusion Model: Reverse Process

* Reverse Process (for de-noising)
X7 = X1-1 7 " 7 Xy
1. Create initial noise: x; ~ N (0, 1)

_ Xt— €t

2. Denoise at each step: x;_; = JiF,
Pt

* Any problems?

1. We don’t know the €; that produces x;, which is random
2. Even though x;|x;_q is Gaussian, x;_;|x; is typically not -> how to sample??

THE OHIO STATE UNIVERSITY
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Diffusion Model: Reverse Process (cont.)

* Let’s tackle the second issue first: instead of x;_4|x;, note that
q(xe—1lx0,x¢) = N (fe(x, X)) Br)

e (3,: what we have
e Gaussian: easy sampling
* i (xg, x¢): known function

* Message: If we know x,, we can easily sample for x;_4

* How to obtain x,??

THE OHIO STATE UNIVERSITY
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Diffusion Model: Training

* We obtain x, by training for the noise &; as a function of x;
* For each (batch of) xj:

1. Sample & ~ N (0,1)

2. Obtain x; = \/(,Y_txo +\/1 — Ay €

3. Minimize ||eg(x;) — &]|* (using GD/SGD/...)
* Effectively, this maximizes the ELBO (Ho et al., 2020)

* During each sampling step, obtain X, from €5(x;), and use i; (X, x;) as
Gaussian mean

THE OHIO STATE UNIVERSITY
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Diffusion Model: Algorithms Overview

Algorithm 1 Training
1: repeat
2: X0 ~ q(x0)
3: t ~ Uniform({1,...,T})
4: €~ N(0,1I)
5: Take gradient descent step on

Vo He — eg(v/arxo + V1 — aze, t)”2

6: until converged

THE OHIO STATE UNIVERSITY
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Diffusion Model: Algorithms Overview

Algorithm 2 Sampling

x7 ~ N(0,I)
cfort=1T,...,1do
z~N(0,I)ift >1,elsez=0

Xi—1 = \/}Jﬂ_t (Xt — \}%EQ(Xt,t)) -+ O+24
end for
return xg

A AN S ey
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Diffusion Model Simulation

https://colab.research.google.com/drive/1kzg-
5IHQN9ZxW66uEsijLgrOwlrj2nai?usp=drive_link
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Diffusion Models as sequential VAE

Decoder Decoder Decoder Decoder
:' " ) 3
Encoder Encoder Encoder Encoder

Figure 2.1: Variational diffusion model by Kingma et al [22]. In this model, the input image
is xo and the white noise is xr. The intermediate variables (or states) xi,...,x7_1 are
latent variables. The transition from x;_; to x; is analogous to the forward step (encoder)
in VAE, whereas the transition from x; to x;_; is analogous to the reverse step (decoder) in
VAE. In variational diffusion models, the input dimension and the output dimension of the
encoders/decoders are identical.
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Issues with Diffusion Model
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Last words: How to choose?

e Pros: fast sampling e Pros: high-quality
e Cons: unstable training, samples, stable
mode collapse training, theoretical
guarantees

e Cons: slow!!!
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Trichotomy of Existing Generative Models
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Which model would you choose?

* Entertainment and gaming?

* Medical imaging?

e Data imputation (for missing data)?
 Autonomous driving?

e Drug discovery?
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Homework

For 2 of 3 models below, change at least 3 parameters of the model in
class; examine any differerence (quantitatively or qualitatively)

1. VAE
2. DCGAN
3. Diffusion Model

e Send your report to chen.11020@ buckeyemail.osu.edu
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e lan Goodfellow, NIPS 2016 Tutorial: Generative Adversarial Networks,
https://arxiv.org/pdf/1701.00160

« DDPM original paper:
https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d96
7f1ab10179cadb-Paper.pdf

* A blog on DDPM: https://lilianweng.github.io/posts/2021-07-11-
diffusion-models/#nice
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