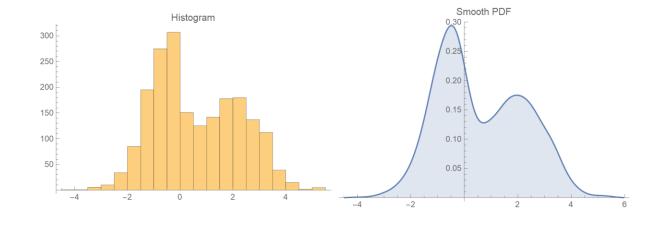
GANs and Diffusion Models

Yuchen Liang REU Summer 2025

Main Tasks for Generative Models

Key: Sample generation

- Density estimation
- Representation learning
- Etc.



E.g., Kernel Density Estimator (KDE) can estimate density, but cannot sample...

Key Challenges

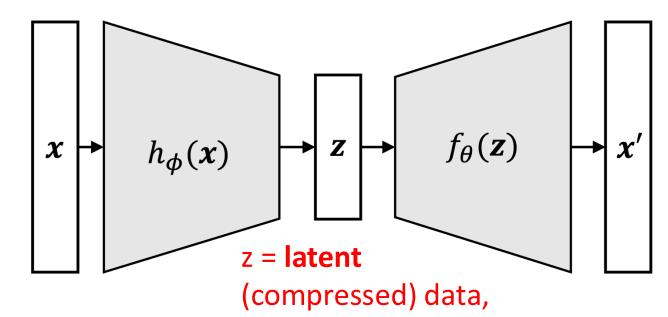
- **1. Representation**: How do we model the marginal/joint distribution of many random variables?
- 2. Learning: What is the right way to compare probability distributions?

• Other challenges: How to obtain a sample? How to evaluate the performance?

Recap on VAE

- Distribution Representation: feed-forward neural network (FFNN)
- Structure: **Encoder** network h_ϕ + **Decoder** network f_θ

Say, an image of 28x28=784 dimensions



say 50 dimensions

-

Recap on VAE Training

• Goal: maximize (log-)likelihood:

$$\log p_{\theta}(x_1, \dots, x_N) = \sum_{i} \log p_{\theta}(x_i)$$

- Practical algorithm: maximize the **ELBO** $\log p_{\theta}(x) \geq ELBO = \int \left(\log p_{\theta}(x,z) \log q_{\phi}(z|x)\right) q_{\phi}(z|x) \ dz$
- Disadvantages of ELBO:
 - 1. Inconsistent estimator (introducing asymptotic bias)
 - 2. Samples tend to have lower quality...

Rethinking the objective...

• Goal: maximize (log-)likelihood:

$$\max_{\theta} \mathbb{E}_{X \sim p_{data}}[\log p_{\theta}(X)]$$

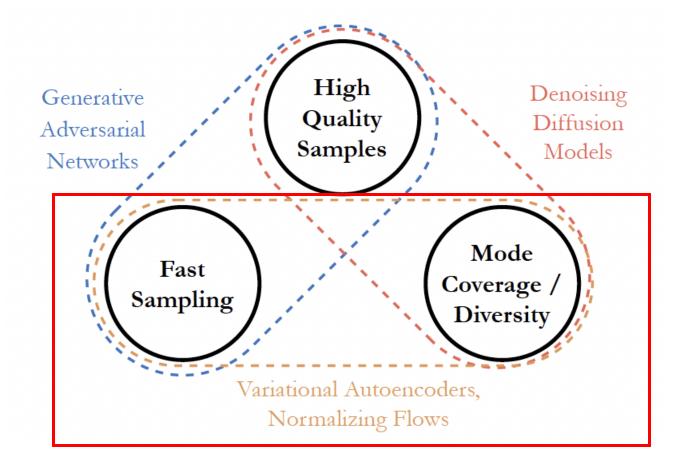
- Fact: Optimal generative model gives the best sample quality and highest likelihood
- Caveat: For imperfect models, higher likelihood ≠ better sample!
- Example: memorizing training data -> great samples, zero likelihood on test dataset

6

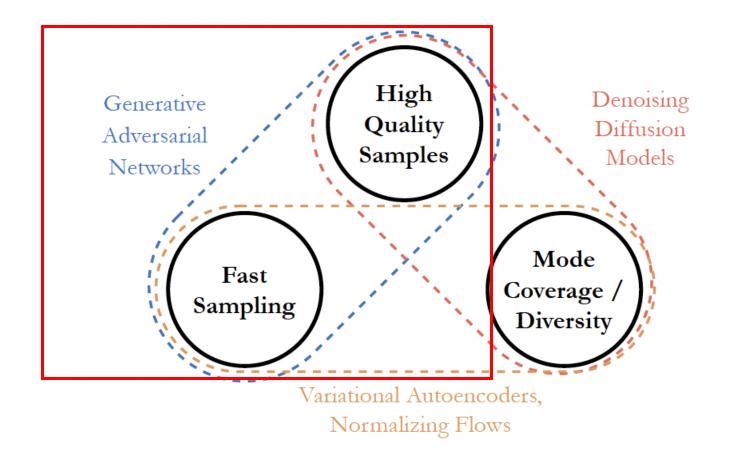
Agenda

- 1. Generative Adversarial Networks (GANs)
- 2. Diffusion models

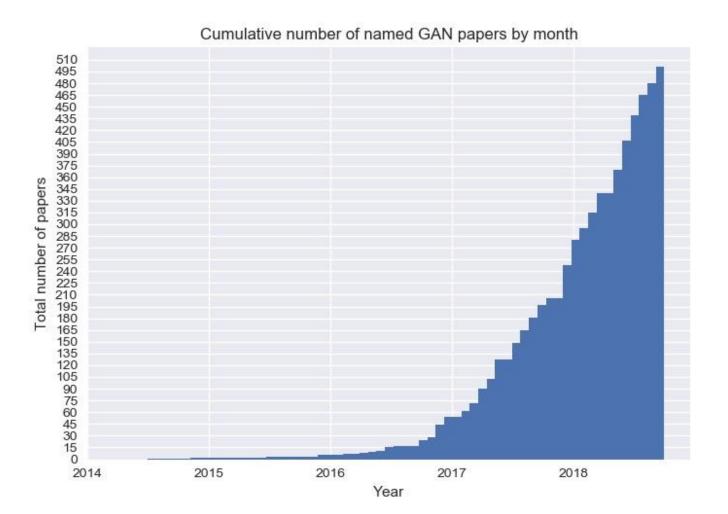
Trichotomy of Existing Generative Models



Trichotomy of Existing Generative Models



The GAN Zoo...



Sample Video from StyleGAN3

Intuition of GAN: Adversarial



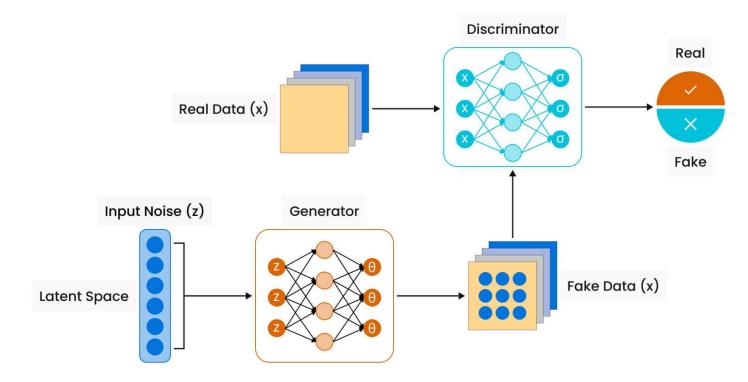
GAN: Basic Structure

- GAN is the only likelihood-free generative model!
- **Discriminator**: Given an input image x, output the prob that it is real
 - If x is real, $D(x) \approx 1$.
 - If x is artificial, $D(x) \approx 0$.

- **Generator**: Generate some x = G(z) such that $D(G(z)) \approx 1$.
 - z is the initial latent noise (e.g., unit Gaussian)

GAN: Basic Structure

Generative Adversarial Network (GAN)



GAN: Training Objective

• Loss for **Discriminator**: For **fixed** G,

$$\max_{D} \left\{ \mathbb{E}_{x \sim p_{data}} [\log D(x)] + \mathbb{E}_{z} \left[\log \left(1 - D(G(z)) \right) \right] \right\}$$

Higher D values for real data

Lower D values for fake data

• Loss for Generator: For fixed D,

$$\min_{G} \left\{ \mathbb{E}_{Z} \left[\log \left(1 - D(G(Z)) \right) \right] \right\}$$

Can we solve GAN's optimization problem?

• Optimization problem:

$$\min_{G} \max_{D} V(G, D) = \mathbb{E}_{x \sim p_{data}} [\log D(x)] + \mathbb{E}_{y \sim p_{G}} [\log(1 - D(y))]$$

• For fixed *G*, take derivative w.r.t. *D*:

$$\begin{split} 0 &= \frac{\delta}{\delta D} V(G,D) = \int p_{\text{data}}(x) \frac{1}{D(x)} dx + \int p_G(x) \frac{-1}{1 - D(x)} dx \\ &\implies 0 = p_{\text{data}}(x) \frac{1}{D(x)} - p_G(x) \frac{1}{1 - D(x)} \\ &\implies D^*(x) = \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_G(x)} \end{split}$$

(Rule of derivative of log)

(b/c everything is nonnegative)

(Rearrange the terms)

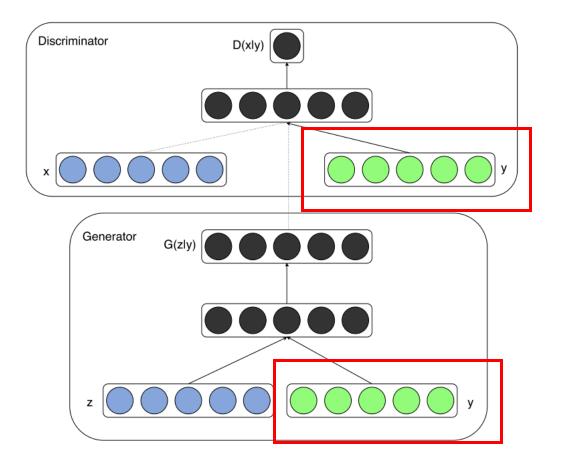
Can we solve GAN's optimization problem? (cont.)

The optimal training loss for fixed G:

$$V(G, D^*) = \int p_{\text{data}}(x) \log \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_G(x)} dx$$
$$+ \int p_G(x) \log \frac{p_G(x)}{p_{\text{data}}(x) + p_G(x)} dx$$
$$= \text{JSD}(p_{\text{data}}(x), p_G(x))$$

- JSD stands for Jensen-Shannon Divergence, measuring diff of dist's
- Optimal Generator: $p_G^* = p_{data}$, and $V^* = -\log 4$

Extension 1: Conditional GAN (CGAN)



Extension 2: Deep Convolutional GAN (DCGAN)

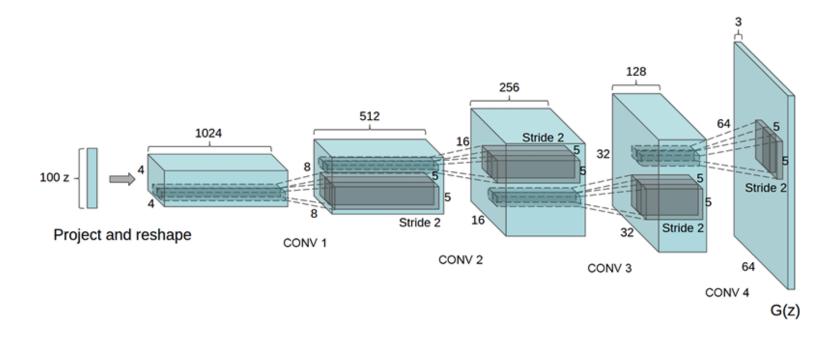


Figure 1: DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribution Z is projected to a small spatial extent convolutional representation with many feature maps. A series of four fractionally-strided convolutions (in some recent papers, these are wrongly called deconvolutions) then convert this high level representation into a 64×64 pixel image. Notably, no fully connected or pooling layers are used.

DCGAN Simulation

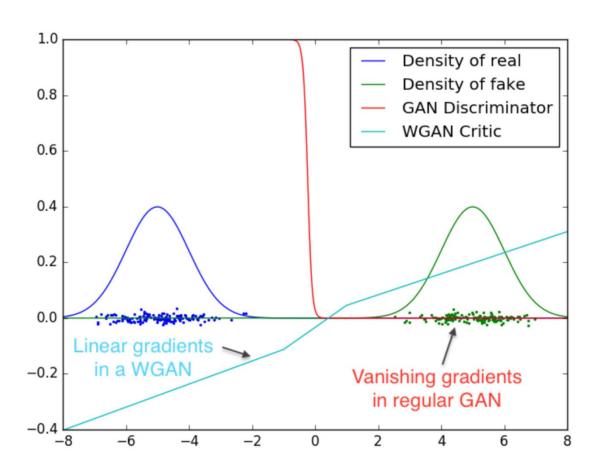
https://colab.research.google.com/drive/1pChdKaxL0ZhMJA_jxpD0k2 WqE1C9yCf_?usp=sharing

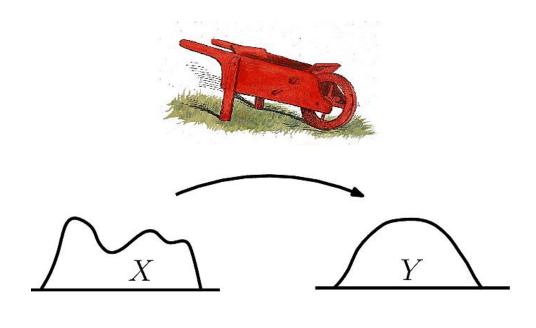
Some Issues with GAN

- 1. Vanishing gradient
- 2. Unstable optimization, even non-convergence
- 3. Mode collapse

- Thus, many (many) tricks: https://github.com/soumith/ganhacks
 - Initialize with Gaussian rather than Uniform
 - Avoid ReLU and MaxPool as they have sparse gradients
 - Add noise to inputs and let them decay
 - Don't balance loss via statistics

Vanishing Gradient and Wasserstein GAN

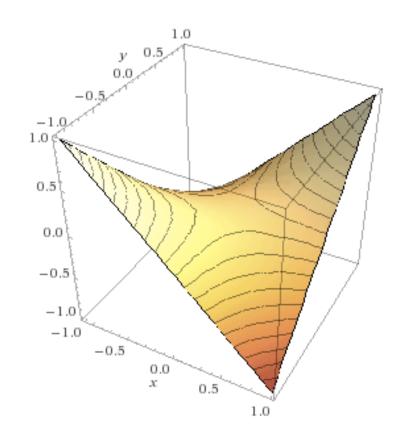




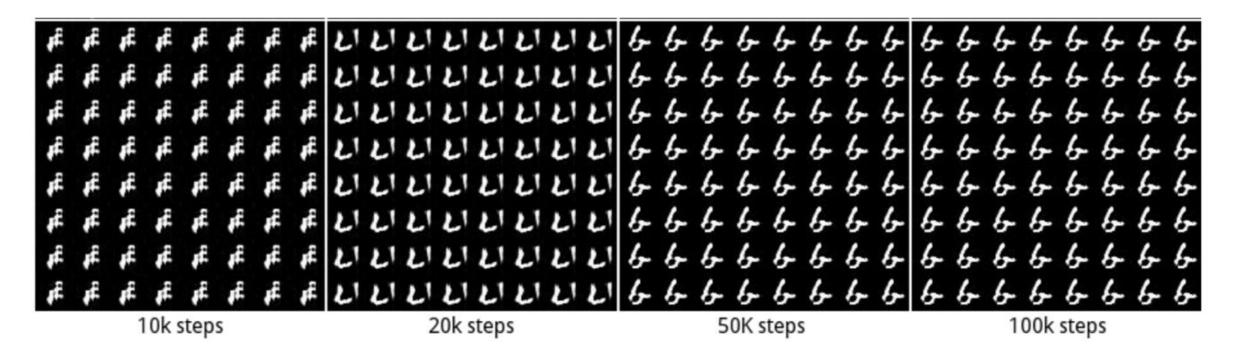
Non-convergence

- GAN objective: $\min_{x} \max_{y} V(x, y)$
- Consider V(x, y) = xy
- Equilibrium (saddle point) at x = y = 0
- Using gradient descent results in a spiral

$$\frac{\partial x_t}{\partial t} = -\frac{\partial V(x_t, y_t)}{\partial x_t}, \quad \frac{\partial y_t}{\partial t} = \frac{\partial V(x_t, y_t)}{\partial y_t}$$
$$x_t = x_0 \cos t - y_0 \sin t$$
$$y_t = x_0 \sin t + y_0 \cos t$$



Mode collapse

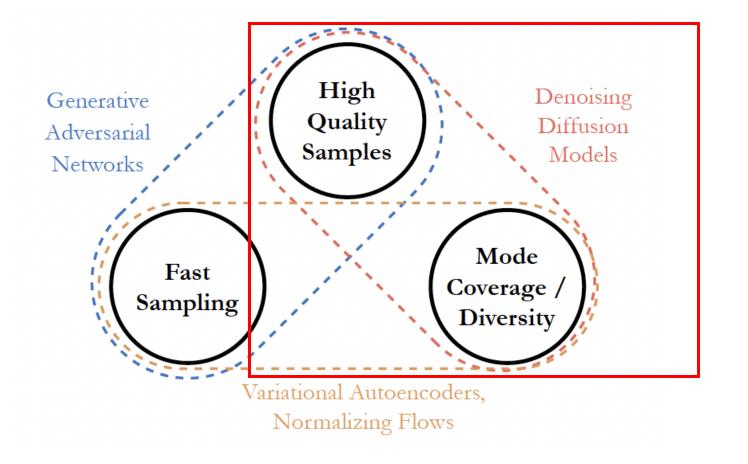


Source: Metz et al., 2017

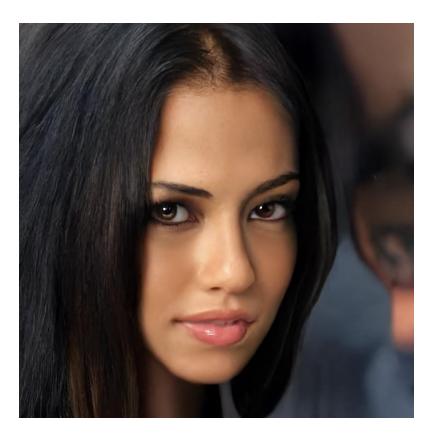
Agenda

- 1. Generative Adversarial Networks (GANs)
- 2. Diffusion models

Trichotomy of Existing Generative Models



High-Fidelity Generation for 1024x1024 Images



Diffusion Models: Motivation

what are the typical steps of drawing a picture for a human?

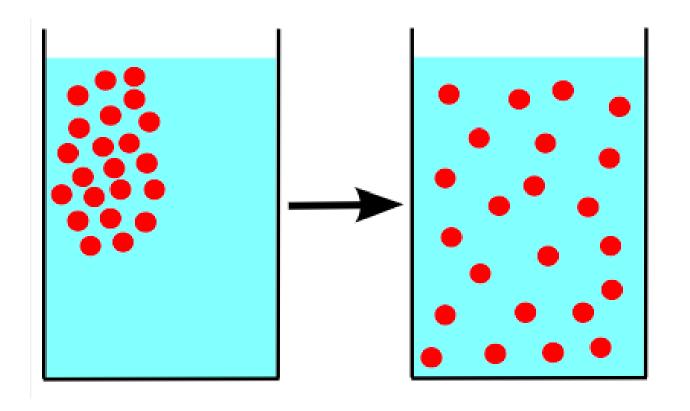
The typical steps a human follows when drawing a picture usually follow a loose structure that blends planning, sketching, refining, and finishing. While the exact process varies depending on the artist's style and medium, here's a general breakdown:

Diffusion Models: Motivation (cont.)

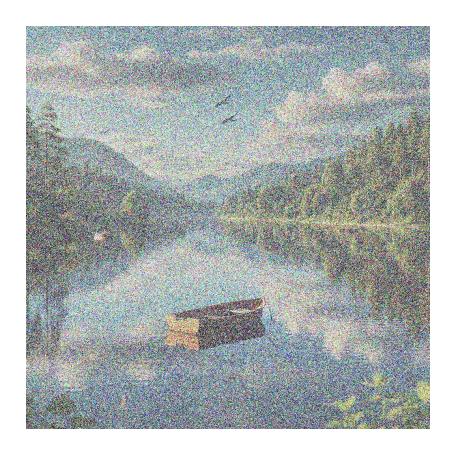
- Takeaway: There is (roughly) a unified structure for creation
- Previously, VAE and GAN generate samples in "one-shot" (one pass of Feed-forward NN)

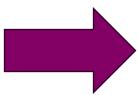
- Question: Can we divide the generation process into small, manageable steps?
- Diffusion Models!

Diffusion Process = Noising



Diffusion Process = Noising (cont.)





From Denoisng to Image Generation

Question: How to use a magic denoiser to create new images?

- 1. Create some noise
- 2. Apply your magic denoiser
- 3. If still noisy, repeat step 2 again...
- 4. Done!



 $X \in R^{1024}$

Diffusion Model: Structure Overview

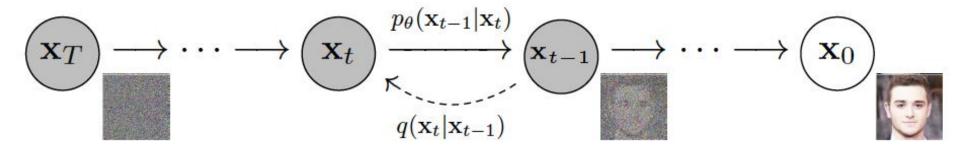


Figure 2: The directed graphical model considered in this work.

Diffusion Model: Forward Process

Forward Process (for noising)

$$\chi_0 \rightarrow \chi_1 \rightarrow \cdots \rightarrow \chi_T$$

Original clean Image

Veeery noisy version...

- Divided into multiple steps (T could be 50-1000)
- During each step, a small amount of (Gaussian) noise is added:

$$x_t = \sqrt{1 - \beta_t} x_{t-1} + \sqrt{\beta_t} \epsilon_t, \quad \epsilon_t \sim \mathcal{N}(0, I)$$

"noise schedule"

Gaussian noise

• Check your understanding: Does larger β_t imply faster/slowlier noising?

What is the distribution of x_T ?

$$x_{T} = \sqrt{1 - \beta_{T}} x_{T-1} + \sqrt{\beta_{T}} \epsilon_{T}$$

$$= \sqrt{\alpha_{T}} x_{T-1} + \sqrt{1 - \alpha_{T}} \epsilon_{T}$$

$$= \sqrt{\alpha_{T} \alpha_{T-1}} x_{T-2} + \sqrt{\alpha_{T} (1 - \alpha_{T-1})} \epsilon_{T-1} + \sqrt{1 - \alpha_{T}} \epsilon_{T}$$

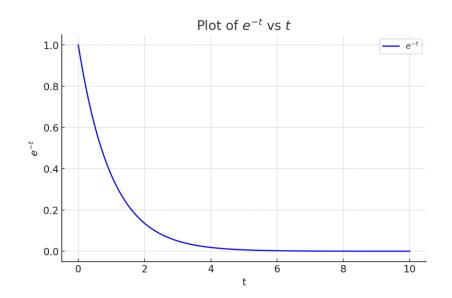
$$= \cdots$$

$$= \sqrt{\alpha_{1} \cdots \alpha_{T}} x_{0} + \sqrt{1 - \alpha_{1} \cdots \alpha_{T}} \bar{\epsilon}_{T}$$

$$= \sqrt{\bar{\alpha}_{T}} x_{0} + \sqrt{1 - \bar{\alpha}_{T}} \bar{\epsilon}_{T}$$

$$= \sqrt{\bar{\alpha}_{T}} x_{0} + \sqrt{1 - \bar{\alpha}_{T}} \bar{\epsilon}_{T}$$

Thus, we can immediately sample x_t from x_0 ...



Diffusion Model: Reverse Process

Reverse Process (for de-noising)

$$x_T \rightarrow x_{T-1} \rightarrow \cdots \rightarrow x_0$$

- 1. Create initial noise: $x_T \sim \mathcal{N}(0, I)$
- 2. Denoise at each step: $x_{t-1} = \frac{x_t \beta_t \epsilon_t}{\sqrt{1 \beta_t}}$
- Any problems?
 - 1. We don't know the ϵ_t that produces x_t , which is **random**
 - 2. Even though $x_t | x_{t-1}$ is Gaussian, $x_{t-1} | x_t$ is **typically not** -> how to sample??

Diffusion Model: Reverse Process (cont.)

- Let's tackle the second issue first: instead of $x_{t-1}|x_t$, note that $q(x_{t-1}|x_0,x_t)=\mathcal{N}(\tilde{\mu}_t(x_0,x_t),\tilde{\beta}_t)$
 - $\tilde{\beta}_t$: what we have
 - Gaussian: easy sampling
 - $\tilde{\mu}_t(x_0, x_t)$: known function

- Message: If we know x_0 , we can easily sample for x_{t-1}
- How to obtain x_0 ??

Diffusion Model: Training

- We obtain x_0 by **training** for the noise $\bar{\epsilon}_t$ as a function of x_t
- For each (batch of) x_0 :
- 1. Sample $\bar{\epsilon}_t \sim \mathcal{N}(0, I)$
- 2. Obtain $x_t = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 \bar{\alpha}_t} \bar{\epsilon}_t$
- 3. Minimize $\|\epsilon_{\theta}(x_t) \bar{\epsilon}_t\|^2$ (using GD/SGD/...)
 - Effectively, this maximizes the **ELBO** (Ho et al., 2020)
- During each sampling step, obtain \hat{x}_0 from $\epsilon_{\theta}(x_t)$, and use $\tilde{\mu}_t(\hat{x}_0, x_t)$ as Gaussian mean

Diffusion Model: Algorithms Overview

Algorithm 1 Training

- 1: repeat
- 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$
- 3: $t \sim \text{Uniform}(\{1,\ldots,T\})$
- 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 5: Take gradient descent step on

$$\nabla_{\theta} \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \right\|^2$$

6: until converged

Diffusion Model: Algorithms Overview

Algorithm 2 Sampling

- 1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 2: **for** t = T, ..., 1 **do**
- 3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\mathbf{z} = \mathbf{0}$

4:
$$\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$$

- 5: end for
- 6: return \mathbf{x}_0

Diffusion Model Simulation

https://colab.research.google.com/drive/1kzg-5iHQN9ZxW66uEsijLgr0w1rj2nai?usp=drive link

Diffusion Models as sequential VAE

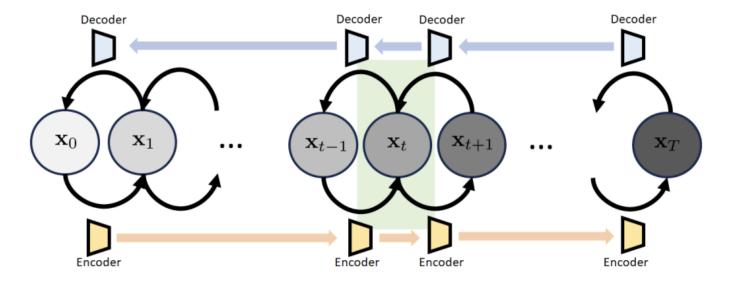
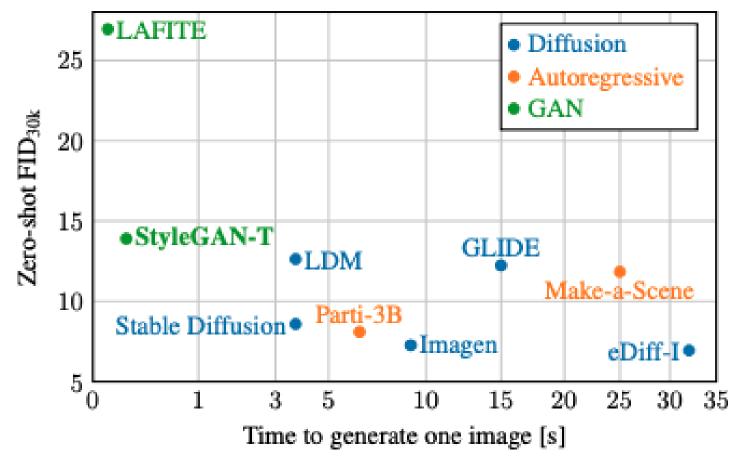


Figure 2.1: Variational diffusion model by Kingma et al [22]. In this model, the input image is \mathbf{x}_0 and the white noise is \mathbf{x}_T . The intermediate variables (or states) $\mathbf{x}_1, \dots, \mathbf{x}_{T-1}$ are latent variables. The transition from \mathbf{x}_{t-1} to \mathbf{x}_t is analogous to the forward step (encoder) in VAE, whereas the transition from \mathbf{x}_t to \mathbf{x}_{t-1} is analogous to the reverse step (decoder) in VAE. In variational diffusion models, the input dimension and the output dimension of the encoders/decoders are identical.

Issues with Diffusion Model



Last words: How to choose?

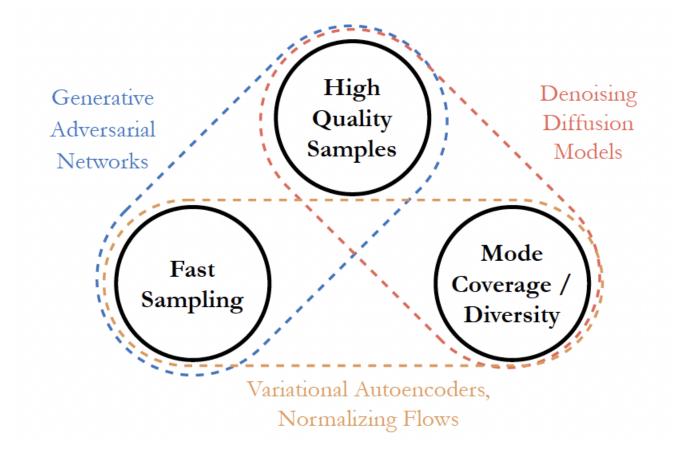
GANs

- Pros: fast sampling
- Cons: unstable training, mode collapse

Diffusion Models

- Pros: high-quality samples, stable training, theoretical guarantees
- Cons: slow!!!

Trichotomy of Existing Generative Models



Which model would you choose?

- Entertainment and gaming?
- Medical imaging?
- Data imputation (for missing data)?
- Autonomous driving?
- Drug discovery?
- •

Homework

For 2 of 3 models below, change at least 3 parameters of the model in class; examine any difference (quantitatively or qualitatively)

- 1. VAE
- 2. DCGAN
- 3. <u>Diffusion Model</u>

• Send your report to chen.11020@buckeyemail.osu.edu

References

- Ian Goodfellow, NIPS 2016 Tutorial: Generative Adversarial Networks, https://arxiv.org/pdf/1701.00160
- DDPM original paper: https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d96 7f1ab10179ca4b-Paper.pdf
- A blog on DDPM: https://lilianweng.github.io/posts/2021-07-11-diffusion-models/#nice

