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What are texts? (cont.)

Two important properties of text:

1. Each token comes from a finite number of
categories (not like Gaussian)
* Token: the smallest divisible element in your algorithm

e E.g., word, character, molecule, pixel,
consonant/vowel...

» Category: token representation (word embedding)

2. (Typically) These categories are not ordered
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What is a Language Model?

* Definition: A Language Model is a probabilistic characterization of the
tokens

P(W1, ) Wn)

* Generative model is a Language model that can generate!
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Autoregressive Model

* Definition: An Autoregressive model is a generative model where the
next token only depends on previous tokens

p(Wq, ..., wy) = p(w)p(Wy|wy) - p(Wy [Wy, =+, Wy_1)

* Useful with sequential inputs: speech, text, etc.
e ...but not necessarily. Remember, it’s just a model!
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Language Modeling — example

* Let’s calculate the probability of “the big dog”
P(the, big, dog) = P(the) P(big|the) P(dog|the, big)

* Terminologies:
e Unigrams: P(the)

* Bigrams: P(big|the)

_ Estimate these probs
using your text corpus...

* Trigrams: P(dog|the, big)
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Example 1: N-Gram

 N-Gram: the “go-to method” before
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deep learning '
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Example 2: RNN

* A family of methods: RNN, LSTM,
GRU, Bi-LSTM...

* |ssues:

1. Only covers mid-range dep (long-
range still hard)

2. Very inefficient to train
(sequential nature)
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Example 3: WaveNet

Generative model of speech signals
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N-Gram and BLEU Score

e BLEU (bilingual evaluation understudy): a quality measure of machine-
translated text (2001)

BLEU,(S;8) := BP(S;8) - exp (Z wy, Inp, (S; .S'))
n=1
e S = (94, ..., Pu): candidate corpus; S = (S, ... Sy): reference corpus
 BP: brevity penalty (only for short candidates)

* p,,: (Idealy) captures how many n-grams in the reference are
reproduced by the candidate sentence
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1. Text and Language Model
2. Large Language Models
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Transformer

“[Transformer is] a model architecture
eschewing recurrence and instead
relying entirely on an attention
mechanism to draw global
dependencies between input and
output.”
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Figure 1: The Transformer - model architecture.
https://arxiv.org/pdf/1706.03762
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Transformer (cont.)

e Basic structure

* Encoder: words -> hidden-state rep (trained in parallel)
* Decoder: hidden-state rep -> probabilities (of words or labels)

* Transformer generates a contextual word embedding
 Word Embedding: numerical representation of each word
e Contextual: the mapping of a word depends on surrounding words
 How? Thru the self-attention mechanism
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(Static) Word Embedding Example

e Question: What is King - Man + Woman?

e Answer: Queen!

female queen

king
e ...which is the answer from Word2vec "’W\ \myal

female woman

15
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Transformer as Language Model
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Transformer (Large) Language Models

2018 2019

GPT GPT-2

GPT = Generative Pre-

trained Transformer KLM

BERT

BERT = Bidirectional
Encoder Representations
from Transformers
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2020
T5
ALBERT
RoBERTa
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KLNet DistilBERT

2021
GPT-3
ELECTRA bl
DeBERTa
LUKE
Longformer
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GPT

* Transformer is just a model. How to use it?

e Generative Pre-Training (GPT): from OpenAl (Radford et al., 2018)

 (Pre-)training: conditional language modeling (CLM) -> next-word pred
L) = Z log P(uwi|wi—k, - .., ui_1;0)

* Fine-tuned for specific tasks... i

P(y|z',...,z™) = softmax(h]"W,). L, (C) = Z log P(y|z*,...,z™).

(z,y)

* Later: GPT-x, ChatGPT (finetuned from GPT-3.5) |
e

https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
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BERT

* Bidirectional Encoder Representations from Transformers (BERT):
from Google (Devlin et al., 2019)

* (Pre-)training objectives
1. Masked language modeling (MLM) -> use masks
2. Next-sentence prediction (NSP)

* Then, fine-tuned for specific tasks
e Advantages (vs. GPT): light-weighted, faster, better for classification
 Later: RoBERTa, DeBERTa (usually enough), ModernBERT
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Types of Large Language Models

* BERT-like (Encoder-only) Models

* Bi-directional structure
e Useful for sentence classification (e.g., sentiment analysis)

* GPT-like (Decoder-only) Models (e.g., also Llama)
e Uni-directional (i.e., autoregressive) structure
e Suitable for generation

e Combined Models: T5, BART, CMLM, etc.
* BERT-like encoder + GPT-like decoder
* Useful for seq2seq tasks: summarization, translation, etc.

THE OHIO STATE UNIVERSITY
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Combined Model Example

BERT GPT trred
Bidirectional | Autoregressive

Encoder Decoder - Encoder > / Decoder -
Frrt Frfrg

A_B _E <s>ABCD

Diagram of BART
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What can LLMs do?

Text generation (from a prompt)
Text classification
Summarization

Translation

Zero-shot classification

Feature extraction

o U s WwheE

All tasks have available pipelines on Hugging Face!
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Language Generation

Completion

To get an A+ in deep generative models, students have to be willing to work

with problems that are a whole lot more interesting than, say, the ones that

most students work on in class. If you're a great student, the question above

To get an A+ in deep generative models, students have to can be avoided and you'll be able to do great work, but if you're not, you will
need to go beyond the basics before getting good.

Custom prompt

Now to be clear, this advice is not just for the deep-learning crowd; it is good
advice for any student who is taking his or her first course in machine
learning.

The key point is that if you have a deep, deep brain of a computer scientist,

P(neXt word | pFEViOUS WOFdS) that's just as important to you.

Radford et al., 2019
THE OHIO STATE UNIVERSITY Demo from talktotransformer.com
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Machine Translation

Conditional generative model P( English text| Chinese text)

Encoder € |m™| 6 |/ €2 |™/™>| e3 |™| 64 |™>| es5 [/ ©s

Decoder do e d; _ dz —_— da

24

Figure from Google Al research blog.
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Issue:

Hallucinations

Definition: a tendency for LLMs to fabricate information which sounds

like facts

X Hallucinated Response:

User: Who won the Nobel Prize in Physics in 2022?
LLM: The 2022 Nobel Prize in Physics was awarded to Dr. Maria Thompson for her

groundbreaking work on quantum teleportation.

Reality:

The 2022 Nobel Prize in Physics was awarded to Alain Aspect, John F. Clauser, and
Anton Zeilinger for experiments with entangled photons, establishing the violation of

Bell inequalities and pioneering quantum information science. 25
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Agenda

1. Text and Language Model
2. Large Language Models
3. Model Adaptations

* Resources

* https://huggingface.co/learn/llm-course/chapterl
* https://www.cs.cmu.edu/~mgormley/courses/10423/

THE OHIO STATE UNIVERSITY
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Why Model Adaptation?

Year of | Training Data (# Model Size (#
release | tokens) parameters)

GPT-2 OpenAl 2019 ~10 billion (40Gb) 1.5 billion
GPT-3 OpenAl 2020 300 billion 175 billion

(cf. ChatGPT)

PaLM Google 2022 780 billion 540 billion
Chinchilla DeepMind 2022 1.4 trillion 70 billion
LaMDA Google 2022 1.56 trillion 137 billion

(cf. Bard)

LLaMA Meta 2023 1.4 trillion 65 billion
LLaMA-2 Meta 2023 2 trillion 70 billion
GPT-4 OpenAl 2023 ? ? (1.76 trillion)
Gemini (Ultra)  Google 2023 E ? (1.5 trillion)
LLaMA-3 Meta 2024 15 trillion 405 billion 27
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Model Pre-training and Fine-tuning

* Pre-training: Train a model from scratch

e ... which results in a foundation model
e E.g., GPT, Stable Diffusion, ...

§5$S in compute

Pretrained

Base model
language model

Very large corpus Days of training

28
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Model Pre-training and Fine-tuning (cont.)

* Fine-tuning: Training based on a pre-trained model for specific tasks
e ... usually using a customized dataset

§SS in compute

Pretrained Fine-tuned
language model language model

Training can be

done on single GPU Easily reproductible

29
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tiﬂﬂ. We ﬂn]}r t[ain A and B The locked, gray blocks show the structure of Stable Diffu-

sion V1.5 {or V2.1, as they use the same U-net architecture).

. The tramnable blue blocks and the white zero convolution 30
LoRA (Low-rank Adaptation) for Transformer layers are added to build a ControlNet,
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Can we avoid extra-training at all?

31
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Fine-tuning vs. In-context Learning

FT FT
125M 350M 13B 27B 6.7B 13B 30B 125M 350M 13B 2L7B 6.7B 13B 30B
125M  —0.00 125M  —0.00 0.00 0.01
JsoM —0.00 3s0M —0.00 0.00 0.01
1L.3B  —0.00 L.3B  —0.01 —-0.00 0.01

8 27B  —0.00 5 27B  —001 —000 001 001
~ 67B  —0.00 = 7B —001 —001 001 0.00
13B  —0.04 —0.01 —0.00 0.05 138 003 —003 —002 —0.02
30B -011 -0.09 —0.08 —0.08 002 003 -0.02 30B 007 —007 —005 —006 003 004 0.00
(a) RTE (b) MNLI

Table 1: Difference between average out-of-domain performance of ICL and FT on RTE (a) and MNLI (b) across

model sizes. We use 16 examples and 10 random seeds for both approaches. For ICL, we use the gpt -3 pattern. As of
For FT, we use pattern-based fine-tuning (PBFT) and select checkpoints according to in-domain performance. 2023
We perform a Welch’s t-test and color cells according to whether: [C1. performs significantly better than F1, FT
performs significantly better than ICL. For cells without color, there is no significant difference.

32
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Prompt Engineering

Goal: Craft and refine your prompts to help the model generate specific

outputs (an instance of ICL)

THE OHIO STATE UNIVERSITY
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Given a list of costomer orders and current stock levels, identify

which orders can be completed and which items need to be reordered.

This 1s crucial for managing stock and ensuring timely order
fulfilment in retail or ecommerce environments.

Orders:
s  QOrder A: Item X (6 units), Item Y (4 units)
* Order B: Item Z (3 units), Item Y (1 unit)

Context

Stock Levels:
o Ttem X: 10 units
s Jtem Y: 2 units
o Ttem Z: 2 units

Completion Status: Done '

A prompt example that includes all four elements

& Input Data

=& QOutput Indicator

Providing context
is essential



Advanced Chain-of-Thought Prompting

Standard Prompting Chain-of-Thought Prompting
s ~
Q: Roger has 5 tennis balls. He buys 2 more cans of Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now? tennis balls does he have now?

A: The answeris 11. A
The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to

make lunch and bought & more, how many apples Q: The cafeteria had 23 apples. If they used 20 to

do they have? make lunch and bought 6 more, how many apples
/| dothey have?

A: The answer is 27. x

answer is 9.

Figure 1: Chain-of-thought prompting enables large language models to tackle complex arithmetic,
commonsense, and symbolic reasoning tasks. Chain-of-thought reasoning processes are highlighted.

THE OHIO STATE UNIVERSITY
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Homework

* Train your own GPT... (Ziyue)
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