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Things can go quite wrong in software
• Software bugs
• Operating system bugs

You runs things in the cloud
• … via VMs in the cloud

You can’t really trust things in the cloud
• What if Amazon peeks your super duper 

extremely valuable secret?
• What if Amazon got hacked and the attacker

peeks your super duper extremely valuable 
secret?

Trust Execution Environments are 
hardware features that can protect the 
software in it from the outside world
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Hypervisor can still manage your VMs
• Create/delete
• Pause
• Limit resource

But they can’t do anything else
• VM is encrypted inside the memory
• Limited interface

You know if you are safe
• Remote attestation to verify
• Intel/AMD will tell you if the CPU is good
• CPU will tell you if your VM is protected

Confidential VMs are here to help
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Your models/data worth tons of money

But GPUs are merely PCIe devices
• Not in CVM’s trust boundary
• Can be hijacked by the hypervisor

It can’t be protected by CVMs alone!

Introducing Confidential GPUs
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NVIDIA H100: The first confidential GPU
• It’s likely more expensive than your car
• Still not in CVM’s trust boundary
• Encryption via driver
• Communicate with CVM only with encryption
• No hypervisor access until reset

Same verifiable trust
• The CVM can now attest the GPU
• You attest the CVM
• So now you trust the GPU

Introducing Confidential GPUs

5

Backgrounds
TEEs in the AI age



6

Backgrounds
TEEs in the AI age

Dataset Model Code

Firmware

App

User Space

Kernel/User Space Driver

GPU Accessible

InterruptsInterrupts

Keys
CPU 
Accessible

Door 
Bell

Bounce Buffers

Interrupt 
Handler

Keys
Managing 

Logics

PCIe/VFIO

IOMMU

Interrupts

DMA Engine

Confidential GPU Confidential VM

Managing 
Logics



In case you are wondering what 
it looks like…
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Data sharing alone is expensive
• Datasets can be huge
• Models can be large
• Transmission cost across nodes is high
• GPU has limited bandwidth

Confidential data sharing is even more tricky
• Sensitive data sharing is prohibited
• Memory sharing across different confidential 

domains has extra high cost for encryption
• Longer data path can increase the attack surface

Data sharing in confidential 
collaborative learning is expensive & 
prone to attacks
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Either share the dataset or model
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Existing 
Solutions Sharing Dataset

• Performance: 
Impacted due to huge datasets

• Security: 
Can be vulnerable due to 
broaden attack surface

Sharing Model/Gradients
• Performance: 

Can be impacted due to huge 
models

• Security: 
Can be vulnerable due to 
individual model inversion
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Confidential Training Data
Distrusting data holders own their confidential VMs 
and controls private training data

GPU Travelling
Physical GPU rotates to different confidential VMs 
at runtime

Low Cost of Data Sharing
Model stays in GPU memory and every datasets is 
only copied once from main memory to GPU 
memory

Proposal

Minimising data sharing via GPU 
Travelling



Enabler

NVIDIA H100 CC uses 
encrypted data path

Single-way attestation: Only a 
CVM attests a GPU but not vice 
versa, allowing us to share the 
GPU to another CVM
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Encrypted transfer via PCIe: 
Sharing the key = sharing the GPU

PCIe/SXM MUX: Routing a 
physical GPU to multiple VMsMUX



System 
Architecture A Central Orchestrator

• Orchestrates the learning process
• Manages GPU sharing to data-holders with the 

data buffer address
• Model training and private data scrubbing 

before handing the GPU to another data holder
• Verification of the integrity of code and model in 

GPU’s memory

Multiple Data Holders
• Provisioning private training data to designated 

buffer and returning the GPU to orchestrator

A Travelling GPU
• Keeping the model in device memory
• Executing commands from the orchestrator
• Obtaining data from data holders
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A Central Orchestrator

Multiple Data Holders

A Travelling GPU



GPU works like a truck, 
travels to data holders 
and then come back for 
training

System 
Architecture
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Threat Model:
Who trust whom?

Orchestrator
• Only trusts the hardware (CPU & GPU)

Data Holders
• Trusts itself
• Trusts the orchestrator
• Trusts the hardware

Who can be malicious?
• Data holders
• Hypervisors (platform provider)
• Outside attackers
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Each data holder only 
trusts itself, orchestrator 
and hardware



Threat Model

What is protected?
• Each data holder’s dataset

What is not protected?
• The model (not against a malicious data holder)

What is out of scope?
• Physical attacks
• Side channels
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Guarantee that each 
data holder’s dataset is 
confidential



System 
Architecture
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How it works
Booting
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How it works
Booting
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How it works
Booting
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How it works
Booting
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How it works
Booting
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How it works
Setup
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How it works
GPU Switching
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How it works
GPU Switching
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How it works
GPU Switching
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How it works
Data Provisioning
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How it works
GPU Switching
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How it works
Training
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How it works
Epilogue
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How it works
Epilogue
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How it works
Next one, please
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System 
Architecture
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Intel TDX

NVIDIA H100

Implementation
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Challenge: No changes 
in proprietary stuff

But man, it’s NVIDIA…

Implementation
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Malicious Data Holders:
• The dataset buffer is cleared
• Model’s address is unknown
• Code is reuploaded each time after GPU 

returns to the orchestrator 

Malicious Hypervisor:
• GPU-CVM communication is encrypted with 

cryptographical integrity protection
• Fake/malicious GPU can’t decrypt the 

communication

Collusion:
• GPU communication key is rotated each time 

before travelling to a new data holder
• No way for a data holder to intercept the new 

data holder’s traffic
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Security 
Analysis

Guarantee that each data holder’s 
dataset is confidential



llm.c-based demo
• Yes it runs LLM
• Yes we tested on LLM
• Yes it performs like crazy
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Evaluations

We’ve tried the real deal
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Evaluations

The bigger the dataset buffer, the faster we are
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Data transfer overhead
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Evaluations

You save at least 7 seconds per 256 MiB buffer
Fineweb is 44 TiB size

One epoch saves you 1261568 s (14+ days)

llm.c comparison w/ GPT-2
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Figure 6: Comparison on synthetic data transmission of di�erent bu�er sizes and di�erent bandwidths.

Table 2: The time spent in training and transmission in llm.c.

Baseline Ours
Training

(s)
Tx
(s)

Tx
Percentage

Training
(s)

Tx
(s)

Tx
Percentage

4M 1230.00 1115.88 47.568% 1230.26 1.01 0.082%
20M 1231.39 230.84 15.787% 1229.39 1.03 0.084%

100M 1231.17 60.36 4.674% 1230.57 1.02 0.083%
500M 1230.73 15.86 1.272% 1229.67 0.98 0.080%

Uncapped 1229.36 7.34 0.594% 1231.46 0.98 0.079%

Porting E�ort. In llm.c, just like most training software, the data is
loaded using a data loader subsystem. This is the only place we need
to modify. Instead of loading from local dataset �les, we now load
from a data holder remotely using our GPUTravellingmechanism as
well as an SSL version for comparison. Also in llm.c, the data holder
naïvely loads only one batch of data each time. Instead, we now �ll
the data bu�er each time. The rest of the code remains the same.

Performance Bene�ts. We compared the performance of GPU
Travelling using a 512 MiB bu�er with di�erent bandwidths. The
results are presented in Table 2. We are particularly interested in
two criteria: Absolute time and relative percentage.

From the table we can tell that for a single 512 MiB transmission,
we can save at least 6.36 seconds even for the uncapped network.
This can scale to a considerable amount of time when the training
dataset is large since each 512 MiB transmission can save 6.36
seconds and the training involves way more than one epoch.

For relative speed up, we consider how many percentage of time
was spent on transmission in the entire training. As we can see, the
transmission cost on a baseline implementation reached over 1%
even with a relatively high 500 Mbps bandwidth. It quickly grew
to 4.67% when the bandwidth was a more common 100 Mbps and
kept growing for the two slower bandwidths.

As requiring uncapped bandwidth is typically not the most cost
e�ective deployment con�guration, we believe that most of the
existing collaborative training mechanisms will need to sacri�ce
on the transmission overheads in exchange of con�dentiality. With
GPU Travelling, the cost can be signi�cantly reduced, both on the
absolute time consumption and the relative overheads.

7.4 Summary of Results
The takeaway of the evaluation results is that GPU Travelling
eliminates the transmission of large dataset via slow connections
and imposes a small and �xed overhead that does not grow along
the transmission size or the bandwidth. When compared with a
baseline implementation, GPU Travelling was signi�cantly faster

in most con�gurations except for some edge cases. The relationship
between the speed up, dataset bu�er size and bandwidth is: A larger
dataset bu�er and a slower link contributes to slower transmission
in the baseline implementation, and therefore a more signi�cant
speed-up for GPU Travelling. The llm.c integration shows feasibility
in real world applications with reasonable porting burden. The
performance results showed considerable training time reduction.

Implication of Even Faster Networking. In our evaluation, due
to hardware limitations, the uncapped network reaches around 1
Gbps. In specialised deep learning cloud VM instances, inter-VM
connection can sometimes go up to a higher bandwidth such as
10 Gbps with physical NICs. We here estimate the implication of
a higher bandwidth using our evaluation data. From Figure 6, we
found that SSL cryptographic imposed about 30%-40% of overheads
for bandwidth over 100Mbps and the overheads aremore signi�cant
when the bandwidth is bigger. Therefore, for 10 and 100 Gbps, the
overhead should be more than 40%. We take 40% for estimation so
the e�ective bandwidth will be 6 Gbps. For a 1 GiB dataset bu�er,
10 Gbps link can take 1.3 s to transmit. The GPU copying will cause
approximately 0.7 s and therefore, the total time will be 2 s. For
GPU Travelling, the static overhead is about 300 ms and the total
time will be 1 s. From the estimation, we can still be 2x faster on a
1 GiB bu�er and a 10 Gbps link and save 1 second for every 1 GiB
of dataset transmitted.

While our GPU Travelling can still improve the performance
considerably even with a faster networking, do note that these
high-bandwidth NICs are targeting the training nodes (e.g., the
orchestrator in GPU Travelling) for the data exchange in the
training process. For data holder CVMs, since it does not have
the duty to run computations, it is generally not cost-e�ective to
assign high-bandwidth NICs to them.

8 Related Works
Federated Learning. Federated Learning (FL) [26, 31] is a
collaborative training mechanism that enables multiple participants
to jointly build a machine learning model while keeping their
private data local. Instead of sharing raw data, participants
exchange model updates, making FL an attractive solution
for mutually distrusted parties or entities handling sensitive
information, such as healthcare or �nancial institutions, where
data privacy is critical.

In practice, Federated Stochastic Gradient Descent (FedSGD) [41]
and Federated Averaging (FedAvg) [31] are the most widely used
aggregation algorithms in FL for training deep neural networks
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Hardware PCIe switches
• Go beyond one server into the whole data 

centre

Change proprietary firmware
• Limit data holder’s access to only the dataset 

buffer
• CUDA  context migration: Can achieve backup 

orchestrator
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