
GPU Traveling
Enabling Efficient Confidential Collaborative Training
with TEE-Enabled GPUs

Shixuan Zhao

A joint work with Zhongshu Gu, Salman Ahmed, Enriquillo Valdez, Hani Jamjoom, Zhiqiang Lin

Things can go quite wrong in software
• Software bugs
• Operating system bugs

You runs things in the cloud
• … via VMs in the cloud

You can’t really trust things in the cloud
• What if Amazon peeks your super duper

extremely valuable secret?
• What if Amazon got hacked and the attacker

peeks your super duper extremely valuable
secret?

Trust Execution Environments are
hardware features that can protect the
software in it from the outside world

2

Backgrounds
What are TEEs?

Hypervisor can still manage your VMs
• Create/delete
• Pause
• Limit resource

But they can’t do anything else
• VM is encrypted inside the memory
• Limited interface

You know if you are safe
• Remote attestation to verify
• Intel/AMD will tell you if the CPU is good
• CPU will tell you if your VM is protected

Confidential VMs are here to help

3

Backgrounds
What are TEEs?

Your models/data worth tons of money

But GPUs are merely PCIe devices
• Not in CVM’s trust boundary
• Can be hijacked by the hypervisor

It can’t be protected by CVMs alone!

Introducing Confidential GPUs

4

Backgrounds
TEEs in the AI age

NVIDIA H100: The first confidential GPU
• It’s likely more expensive than your car
• Still not in CVM’s trust boundary
• Encryption via driver
• Communicate with CVM only with encryption
• No hypervisor access until reset

Same verifiable trust
• The CVM can now attest the GPU
• You attest the CVM
• So now you trust the GPU

Introducing Confidential GPUs

5

Backgrounds
TEEs in the AI age

6

Backgrounds
TEEs in the AI age

Dataset Model Code

Firmware

App

User Space

Kernel/User Space Driver

GPU Accessible

InterruptsInterrupts

Keys
CPU
Accessible

Door
Bell

Bounce Buffers

Interrupt
Handler

Keys
Managing

Logics

PCIe/VFIO

IOMMU

Interrupts

DMA Engine

Confidential GPU Confidential VM

Managing
Logics

In case you are wondering what
it looks like…

7

Backgrounds
TEEs in the AI age

Data sharing alone is expensive
• Datasets can be huge
• Models can be large
• Transmission cost across nodes is high
• GPU has limited bandwidth

Confidential data sharing is even more tricky
• Sensitive data sharing is prohibited
• Memory sharing across different confidential

domains has extra high cost for encryption
• Longer data path can increase the attack surface

Data sharing in confidential
collaborative learning is expensive &
prone to attacks

8

Research
Problem

Either share the dataset or model

9

Existing
Solutions Sharing Dataset

• Performance:
Impacted due to huge datasets

• Security:
Can be vulnerable due to
broaden attack surface

Sharing Model/Gradients
• Performance:

Can be impacted due to huge
models

• Security:
Can be vulnerable due to
individual model inversion

10

Confidential Training Data
Distrusting data holders own their confidential VMs
and controls private training data

GPU Travelling
Physical GPU rotates to different confidential VMs
at runtime

Low Cost of Data Sharing
Model stays in GPU memory and every datasets is
only copied once from main memory to GPU
memory

Proposal

Minimising data sharing via GPU
Travelling

Enabler

NVIDIA H100 CC uses
encrypted data path

Single-way attestation: Only a
CVM attests a GPU but not vice
versa, allowing us to share the
GPU to another CVM

11

Encrypted transfer via PCIe:
Sharing the key = sharing the GPU

PCIe/SXM MUX: Routing a
physical GPU to multiple VMsMUX

System
Architecture A Central Orchestrator

• Orchestrates the learning process
• Manages GPU sharing to data-holders with the

data buffer address
• Model training and private data scrubbing

before handing the GPU to another data holder
• Verification of the integrity of code and model in

GPU’s memory

Multiple Data Holders
• Provisioning private training data to designated

buffer and returning the GPU to orchestrator

A Travelling GPU
• Keeping the model in device memory
• Executing commands from the orchestrator
• Obtaining data from data holders

12

A Central Orchestrator

Multiple Data Holders

A Travelling GPU

GPU works like a truck,
travels to data holders
and then come back for
training

System
Architecture

13

Data Holder
1

Orchestrator

…

PCIe
MUX

Data Holder
2

Data Holder
n

Confidential GPU

Dataset Buffer Model Code CC

Threat Model:
Who trust whom?

Orchestrator
• Only trusts the hardware (CPU & GPU)

Data Holders
• Trusts itself
• Trusts the orchestrator
• Trusts the hardware

Who can be malicious?
• Data holders
• Hypervisors (platform provider)
• Outside attackers

14

Each data holder only
trusts itself, orchestrator
and hardware

Threat Model

What is protected?
• Each data holder’s dataset

What is not protected?
• The model (not against a malicious data holder)

What is out of scope?
• Physical attacks
• Side channels

15

Guarantee that each
data holder’s dataset is
confidential

System
Architecture

16

Data Holder
1

Orchestrator

…

PCIe
MUX

Data Holder
2

Data Holder
n

Confidential GPU

Dataset Buffer Model Code CC

How it works
Booting

17

Orchestrator

Not-Yet Confidential GPU

GPU MUX

How it works
Booting

18

Orchestrator

Not-Yet Confidential GPU

Data Holder

Re
m

ot
e

At
te

st
at

io
n

GPU MUX

How it works
Booting

19

Orchestrator

Not-Yet Confidential GPU

Data Holder

En
cr

yp
te

d
Ch

an
ne

l

GPU MUX

How it works
Booting

20

Orchestrator

Not-Yet Confidential GPU

Data Holder

En
cr

yp
te

d
Ch

an
ne

l

GPU MUX

Enable CC &
Remote

Attestation

How it works
Booting

21

Orchestrator

Confidential GPU

Data Holder

En
cr

yp
te

d
Ch

an
ne

l

GPU MUX

How it works
Setup

22

Orchestrator

Confidential GPU

Base/Empty
Model

Data Holder

En
cr

yp
te

d
Ch

an
ne

l

GPU MUX

Initialise base
model

How it works
GPU Switching

23

Orchestrator

Confidential GPU

Data Holder

En
cr

yp
te

d
Ch

an
ne

l

GPU MUX

Allocate
dataset buffer

Dataset Buffer Base/Empty
Model

How it works
GPU Switching

24

Orchestrator

Confidential GPU

Data Holder

En
cr

yp
te

d
Ch

an
ne

l

GPU MUX

Switch MUX
to data holder

Base/Empty
Model

Dataset Buffer

Only physically
connected. No key so

can’t go through

How it works
GPU Switching

25

Orchestrator

Confidential GPU

Data Holder

Se
nd

 k
ey

 v
ia

en

cr
yp

te
d

ch
an

ne
l

GPU MUX

Switch MUX
to data holder

Base/Empty
Model

Dataset Buffer

Now with key so the
channel is viable

How it works
Data Provisioning

26

Orchestrator

Confidential GPU

Data Holder

En
cr

yp
te

d
Ch

an
ne

l

GPU MUX

Base/Empty
Model

Dataset Buffer

Copy dataset
to the GPU

How it works
GPU Switching

27

Orchestrator

Confidential GPU

Data Holder

En
cr

yp
te

d
Ch

an
ne

l

GPU MUX

Base/Empty
Model

Dataset Buffer

Switch MUX to
orchestrator

How it works
Training

28

Orchestrator

Confidential GPU

Data Holder

En
cr

yp
te

d
Ch

an
ne

l

GPU MUX

Upload code
to the GPU &

train

CodeBase/Empty
Model

Dataset Buffer

How it works
Epilogue

29

Orchestrator

Confidential GPU

Data Holder

En
cr

yp
te

d
Ch

an
ne

l

GPU MUX

ModelDataset Buffer Code

Clear the
dataset buffer

How it works
Epilogue

30

Orchestrator

Confidential GPU

Data Holder

En
cr

yp
te

d
Ch

an
ne

l

GPU MUX

ModelDataset Buffer Code

Rotate the
key with the

GPU

This data holder can no
longer talk to the GPU
even if it’s malicious

How it works
Next one, please

31

Orchestrator

Confidential GPU

Yet Another
Data Holder

En
cr

yp
te

d
Ch

an
ne

l

GPU MUX

ModelDataset Buffer Code

Ready to be passed to
another data holder

System
Architecture

32

Data Holder
1

Orchestrator

…

PCIe
MUX

Data Holder
2

Data Holder
n

Confidential GPU

Dataset Buffer Model Code CC

Intel TDX

NVIDIA H100

Implementation

33

DMADMA

...

IOMMU Interrupts Mgr.

eventfdeventfd

GP
U

Hy
pe

rv
is

or
CV

M

IRQ Handler

IRQ Handler

Unencrypted
CPU
Accessible

Proprietary GPU Firmware, etc.

DMA

Unencrypted
GPU
Accessible

MMIO

O

DHn

DH1
DH2

DMA

Unencrypted
GPU
Accessible

MMIO

IRQ Handler

CUDA
(Proprietary)

KeysFull Context

NVIDIA
Driver

No KeyIncomplete Context

NVIDIA
Driver

App Data Holder Server

Orchestrator Data Holder 1

Challenge: No changes
in proprietary stuff

But man, it’s NVIDIA…

Implementation

34

DMADMA

...

IOMMU Interrupts Mgr.

eventfdeventfd

GP
U

Hy
pe

rv
is

or
CV

M

IRQ Handler

IRQ Handler

Unencrypted
CPU
Accessible

Proprietary GPU Firmware, etc.

DMA

Unencrypted
GPU
Accessible

MMIO

O

DHn

DH1
DH2

DMA

Unencrypted
GPU
Accessible

MMIO

IRQ Handler

CUDA
(Proprietary)

KeysFull Context

NVIDIA
Driver

No KeyIncomplete Context

NVIDIA
Driver

App Data Holder Server

Orchestrator Data Holder 1

Malicious Data Holders:
• The dataset buffer is cleared
• Model’s address is unknown
• Code is reuploaded each time after GPU

returns to the orchestrator

Malicious Hypervisor:
• GPU-CVM communication is encrypted with

cryptographical integrity protection
• Fake/malicious GPU can’t decrypt the

communication

Collusion:
• GPU communication key is rotated each time

before travelling to a new data holder
• No way for a data holder to intercept the new

data holder’s traffic

35

Security
Analysis

Guarantee that each data holder’s
dataset is confidential

llm.c-based demo
• Yes it runs LLM
• Yes we tested on LLM
• Yes it performs like crazy

36

Evaluations

We’ve tried the real deal

37

Evaluations

The bigger the dataset buffer, the faster we are

17,446

3,624
990 273 202390 385 378 339 339

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

4M 20M 100M 500M Uncapped

69,826

14,391
3,836 1,038 561423 418 414 388 388

0
10000
20000
30000
40000
50000
60000
70000
80000

4M 20M 100M 500M Uncapped

279,153

57,388

14,814 3,992 1,697542 537 526 498 498
0

50000

100000

150000

200000

250000

300000

4M 20M 100M 500M Uncapped

1,115,958

229,248

59,631 15,560 4,4351,012 1,029 1,021 979 980
0

200000

400000

600000

800000

1000000

1200000

4M 20M 100M 500M Uncapped

Baseline
Ours

Ti
m

e
(m

s)

4 MiB 32 MiB 128 MiB 512 MiB

44.71× 9.42× 2.62× 0.81× 0.59× 165.26× 34.39× 9.27× 2.68× 1.45× 515.22× 106.84× 28.14× 8.02× 3.41× 1103.15× 222.88× 58.42× 15.89× 4.53×Speed Up

Data transfer overhead

38

Evaluations

You save at least 7 seconds per 256 MiB buffer
Fineweb is 44 TiB size

One epoch saves you 1261568 s (14+ days)

llm.c comparison w/ GPT-2

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

GPU Travelling: E�icient Confidential Collaborative Training with TEE-Enabled GPUs ACM CCS’25, October 13–17, 2025, Taipei, Taiwan

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

17,446

3,624
990 273 202390 385 378 339 339

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

4M 20M 100M 500M Uncapped

69,826

14,391
3,836 1,038 561423 418 414 388 388

0
10000
20000
30000
40000
50000
60000
70000
80000

4M 20M 100M 500M Uncapped

279,153

57,388

14,814 3,992 1,697542 537 526 498 498
0

50000

100000

150000

200000

250000

300000

4M 20M 100M 500M Uncapped

1,115,958

229,248

59,631 15,560 4,4351,012 1,029 1,021 979 980
0

200000

400000

600000

800000

1000000

1200000

4M 20M 100M 500M Uncapped

Baseline
Ours

Ti
m

e
(m

s)

4 MiB 32 MiB 128 MiB 512 MiB

44.71× 9.42× 2.62× 0.81× 0.59× 165.26× 34.39× 9.27× 2.68× 1.45× 515.22× 106.84× 28.14× 8.02× 3.41× 1103.15× 222.88× 58.42× 15.89× 4.53×Speed Up

Figure 6: Comparison on synthetic data transmission of di�erent bu�er sizes and di�erent bandwidths.

Table 2: The time spent in training and transmission in llm.c.

Baseline Ours
Training

(s)
Tx
(s)

Tx
Percentage

Training
(s)

Tx
(s)

Tx
Percentage

4M 1230.00 1115.88 47.568% 1230.26 1.01 0.082%
20M 1231.39 230.84 15.787% 1229.39 1.03 0.084%

100M 1231.17 60.36 4.674% 1230.57 1.02 0.083%
500M 1230.73 15.86 1.272% 1229.67 0.98 0.080%

Uncapped 1229.36 7.34 0.594% 1231.46 0.98 0.079%

Porting E�ort. In llm.c, just like most training software, the data is
loaded using a data loader subsystem. This is the only place we need
to modify. Instead of loading from local dataset �les, we now load
from a data holder remotely using our GPUTravellingmechanism as
well as an SSL version for comparison. Also in llm.c, the data holder
naïvely loads only one batch of data each time. Instead, we now �ll
the data bu�er each time. The rest of the code remains the same.

Performance Bene�ts. We compared the performance of GPU
Travelling using a 512 MiB bu�er with di�erent bandwidths. The
results are presented in Table 2. We are particularly interested in
two criteria: Absolute time and relative percentage.

From the table we can tell that for a single 512 MiB transmission,
we can save at least 6.36 seconds even for the uncapped network.
This can scale to a considerable amount of time when the training
dataset is large since each 512 MiB transmission can save 6.36
seconds and the training involves way more than one epoch.

For relative speed up, we consider how many percentage of time
was spent on transmission in the entire training. As we can see, the
transmission cost on a baseline implementation reached over 1%
even with a relatively high 500 Mbps bandwidth. It quickly grew
to 4.67% when the bandwidth was a more common 100 Mbps and
kept growing for the two slower bandwidths.

As requiring uncapped bandwidth is typically not the most cost
e�ective deployment con�guration, we believe that most of the
existing collaborative training mechanisms will need to sacri�ce
on the transmission overheads in exchange of con�dentiality. With
GPU Travelling, the cost can be signi�cantly reduced, both on the
absolute time consumption and the relative overheads.

7.4 Summary of Results
The takeaway of the evaluation results is that GPU Travelling
eliminates the transmission of large dataset via slow connections
and imposes a small and �xed overhead that does not grow along
the transmission size or the bandwidth. When compared with a
baseline implementation, GPU Travelling was signi�cantly faster

in most con�gurations except for some edge cases. The relationship
between the speed up, dataset bu�er size and bandwidth is: A larger
dataset bu�er and a slower link contributes to slower transmission
in the baseline implementation, and therefore a more signi�cant
speed-up for GPU Travelling. The llm.c integration shows feasibility
in real world applications with reasonable porting burden. The
performance results showed considerable training time reduction.

Implication of Even Faster Networking. In our evaluation, due
to hardware limitations, the uncapped network reaches around 1
Gbps. In specialised deep learning cloud VM instances, inter-VM
connection can sometimes go up to a higher bandwidth such as
10 Gbps with physical NICs. We here estimate the implication of
a higher bandwidth using our evaluation data. From Figure 6, we
found that SSL cryptographic imposed about 30%-40% of overheads
for bandwidth over 100Mbps and the overheads aremore signi�cant
when the bandwidth is bigger. Therefore, for 10 and 100 Gbps, the
overhead should be more than 40%. We take 40% for estimation so
the e�ective bandwidth will be 6 Gbps. For a 1 GiB dataset bu�er,
10 Gbps link can take 1.3 s to transmit. The GPU copying will cause
approximately 0.7 s and therefore, the total time will be 2 s. For
GPU Travelling, the static overhead is about 300 ms and the total
time will be 1 s. From the estimation, we can still be 2x faster on a
1 GiB bu�er and a 10 Gbps link and save 1 second for every 1 GiB
of dataset transmitted.

While our GPU Travelling can still improve the performance
considerably even with a faster networking, do note that these
high-bandwidth NICs are targeting the training nodes (e.g., the
orchestrator in GPU Travelling) for the data exchange in the
training process. For data holder CVMs, since it does not have
the duty to run computations, it is generally not cost-e�ective to
assign high-bandwidth NICs to them.

8 Related Works
Federated Learning. Federated Learning (FL) [26, 31] is a
collaborative training mechanism that enables multiple participants
to jointly build a machine learning model while keeping their
private data local. Instead of sharing raw data, participants
exchange model updates, making FL an attractive solution
for mutually distrusted parties or entities handling sensitive
information, such as healthcare or �nancial institutions, where
data privacy is critical.

In practice, Federated Stochastic Gradient Descent (FedSGD) [41]
and Federated Averaging (FedAvg) [31] are the most widely used
aggregation algorithms in FL for training deep neural networks

11

Hardware PCIe switches
• Go beyond one server into the whole data

centre

Change proprietary firmware
• Limit data holder’s access to only the dataset

buffer
• CUDA context migration: Can achieve backup

orchestrator

39

Outlook

Can we do more if…

40

Q&A

Data Holder
1

Orchestrator

…

PCIe
MUX

Data Holder
2

Data Holder
n

Confidential GPU

Dataset Buffer Model Code CC

