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Motivation for Distributed Learning

» Modern datasets (e.g., images, video, logs) are massive.
» Deep learning models can have billions of parameters.
(Chatgpt3: 175 billions)
> Training on a single machine faces:
» Memory constraints
» Computational bottlenecks
» Long training time (days or weeks)



Motivation for Distributed Learning

» Modern datasets (e.g., images, video, logs) are massive.
» Deep learning models can have billions of parameters.

(Chatgpt3: 175 billions)
> Training on a single machine faces:
» Memory constraints
» Computational bottlenecks
» Long training time (days or weeks)
» Distributed learning splits both data and model to compute
them across nodes.
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What Is Distributed Learning?

» Train one global model across multiple data holders.
» Each device performs local computation on its own data.

» Communication and coordination needed to combine insights.
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What Is Distributed Learning?

Two paradigms:
» Federated Learning (FL): with a server
» Decentralized Learning (DL): no server

Distributed Machine Learning
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Federated vs Decentralized Learning
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Centralized Storage

Federated Learning
» Clients train locally

» Server aggregates model
updates

» Server failure = system
failure

Key difference: Coordination
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Decentralized Storage

Decentralized Learning
» No central server

» Each node communicates
with neighbors

» More robust to node or
link failures

architecture



Why No Server in Distributed Learning?

1. Networks With No Infrastructure
Ad hoc sensor networks for environmental monitoring
Multi-agent systems: autonomous vehicles, UAVs, robotics
Battlefield autonomous swarms

In-situ disaster recovery
Networks using random access (e.g., CSMA, ALOHA)
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2. Security, Robustness, and Privacy
» Avoid single point of failure
» Reduce attack surface (no centralized target)
» Prevent communication bottlenecks
» Preserve information privacy
P Prevent centralized control or manipulation

3. Economic and Social Motivation
» Enable fair competition or cooperation between entities
» Establish trust among autonomous parties
» Support personalization and diversity
» Avoid dominance by centralized infrastructure



Math Formulation of Decentralized Optimization

» The network is a connected undirected
graph: G = (W, L)

» |N] = N: number of nodes
|£| = L: number of communication
edges

> x € RY: the global model to be
learned

J3(x) fa(x)

» Each node i can only evaluate a local loss:
f,(X) = E&fNDi[fi(Xafi)]

N
1
> Global objective:  f(x) = > fi(x)
i=1

» Goal: collaboratively minimize f(x) without a central server



Example: Decentralized Learning in Multi-UAV Systems
Scenario:

» A fleet of UAVs (Unmanned Aerial Vehicles, i.e., drones)
explores a geographic region.

» Each UAV collects high-resolution, geo-tagged images of the
environment.

» The learning objective is to predict a physical quantity such as
ground temperature or elevation from the image.

> UAVs are connected in a communication graph and share
model parameters with neighbors.
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Example: Decentralized Learning in Multi-UAV Systems

Regression Model:

>
>

>

Each UAV i has local dataset {uj, vjj, 0 JI'V:i1

ujj, vjj are image feature vectors; ¢; is the temperature or
elevation label

Agents aim to collaboratively solve a regression problem using
a linear model:x = [xlT XzT]T

2
Local objective: fi(x) = Ni JI.V:"l (Qij — (u,;’-—xl + vij-rxz))

Global decentralized objective: min, f(x) = % Z,N:1 fi(x)

Image
regression
-u v 0 Temperature
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Consensus Mechanism: Reformulation

How to deal with the communications?



Consensus Mechanism: Reformulation

How to deal with the communications?
Goal: Solve the global optimization problem
in a decentralized and collaborative way:

min f(x) = min —Zf

xERY xeRd N

Consensus Reformulation:

fa(x) fa(x)

N
. 1 . . &
min {N Zl fi(xi) subjectto x; = x;, Y(i,j) € ﬁ}

{X,'ERd}I-N:1

The variable x is replaced by local copies x;, and consensus
constraints ensure they agree over the network.



Recall What We Did When We Have a Server

Centralized (Server-Based) Learning:
» Each node (or client) i computes:
Xj k+1 = Xk — Nk&i k

where the global average is: X, = % Z,N:1 Xi k

» This update relies on a central server to compute and
broadcast ki

Decentralized ldea:

> How to approximate the average locally?
Xi k+1 = "Some approximation of X" — 7xg&i «

» This leads to the field of Decentralized Consensus
Optimization



Consensus Mechanism: Computing Average

How to describe the network in math?



Consensus Mechanism: Computing Average

How to describe the network in math?
Consensus Matrix Setup
Let W € RV*N be a consensus matrix satisfying:

> Doubly stochastic: SN, W = ZJ Wi=1
> Sparsity pattern: Wj; > 0 if (i,j) € £; Wj; = 0 otherwise
» Symmetric: W = W if (i,j) € £

Example Network and Associated W:
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Consensus Mechanism: Computing Average

1. Initialization: Let kK = 0. Each node / starts with an initial
value x;g.

2. Communication: In iteration k, each node i sends x; \ to its
neighbors j € N (7).

3. Consensus Update: Upon receiving values from neighbors,
each node updates:

Xi k41 = Z Wiix; i
JEN(i)

where Wj; > 0 if (i,j) € £ and W is a doubly stochastic
consensus matrix.

4. Repeat: Let k <+ k+ 1 and return to Step 2.



Consensus Mechanism: Computing Average
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Consensus Update: Upon receiving values from neighbors, each

Xik+1 = § Wijxj k

node updates:

JEN(i)

where Wj; > 0 if (i,j) € £ and W is a doubly stochastic consensus

matrix.

X1,k+1 =

[0.25x1 + 0.25x3 4 0.25x3 + 0.25x4]



Decentralized Stochastic Gradient Descent (DSGD)

Steps:
1. Initialization: Let k = 1. Choose initial value x; 1 and step
size o for all i.
2. Communication: Each node i sends x;  to all its neighbors
JeN().
3. Local Update: Upon receiving x;j x from all j € N'(i), node i
performs:

Xi k41 = Z Wijxjk — auVFi(xik, &ik)
JEN(i)

Local SGD Step

Consensus Step

where §; i is a stochastic sample at node /.
4. lIterate: Let k + k + 1 and repeat from Step 2.



Performance and Practical Challenges

Slower convergence on sparse graphs
Data heterogeneity causes divergence
Asynchrony may cause inconsistency

Communication cost limits frequency
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Gradient tracking and momentum can help



Summary and Takeaways

» Distributed learning enables parallel training.
» Decentralized learning eliminates central coordination.
» DSGD blends local SGD with peer-to-peer averaging.

> Key tradeoff: speed vs. communication cost.
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